关闭

机器学习基础unsupervised 和supervised学习

标签: 机器学习
3034人阅读 评论(0) 收藏 举报
分类:

1、定义

引用维基百科和百度百科。

监督式学习(英语Supervised learning),是一个机器学习中的方法,可以由训练资料中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练资料是由输入物件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。(wikipedia)利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。(baidu)

无监督学习/非监督式学习(unsupervised learning):设计分类器时候,用于处理未被分类标记的样本集。监督学习中在给予计算机学习样本的同时,还告诉计算各个样本所属的类别。若所给的学习样本不带有类别信息,就是无监督学习。(baidu)

非监督式学习是一种机器学习的方式,并不需要人力来输入标签。它是监督式学习和强化学习等策略之外的一种选择。在监督式学习中,典型的任务是分类和回归分析,且需要使用到人工预先准备好的范例。一个常见的非监督式学习是数据聚类

百度百科和维基百科定义有点抽象,为了更为简明的在神经网络学习中进行表述,我们给出我们对监督学习和非监督学习的定义:

监督式学习:能够通过训练样本集或专家知识构建已知且确定的判定函数,并根据训练集和该判定函数形成模型改进策略,对模型参数进行不断改进,完成模型学习的过程称为监督式学习;如果无法从训练样本集或专家知识构建确定的判定函数,而通过训练集与一给定的判定函数进行模型参数不断改进,完成学习的过程称为非监督式学习。

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:99448次
    • 积分:1226
    • 等级:
    • 排名:千里之外
    • 原创:20篇
    • 转载:25篇
    • 译文:1篇
    • 评论:13条
    最新评论