学习GraphX

首先准备如下社交图形数据:


打开spark-shell;

导入相关包:

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

创建如上graph对象:

// Create an RDD for the vertices
val users: RDD[(VertexId, (String, Boolean))] =
  sc.parallelize(Array((1L, ("Li Yapeng", true)), (2L, ("Wang Fei", false)), (3L, ("Xie Tingfeng", true)), (4L, ("Zhang Bozhi", false)), (5L, ("Chen Guanxi", true))))
// Create an RDD for edges
val relationships: RDD[Edge[String]] =
  sc.parallelize(Array(Edge(1L, 2L, "spouse"),    Edge(2L, 3L, "spouse"),
                       Edge(3L, 4L, "spouse"), Edge(4L, 5L, "friend"), Edge(3L, 5L, "friend")))
// Define a default user in case there are relationship with missing user
val defaultUser = ("Who?", false)
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)

尝试打印出所有的男艺人:

graph.vertices.filter(_._2._2).collect

res8: Array[(org.apache.spark.graphx.VertexId, (String, Boolean))] = Array((1,(Li Yapeng,true)), (3,(Xie Tingfeng,true)), (5,(Chen Guanxi,true)))

按焦点程度逆序打印出艺人的ID:

graph.degrees.sortBy(_._2,false).collect

res12: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((3,3), (2,2), (4,2), (5,2), (1,1))

但是没办法知道艺人的名字,join一下:

graph.degrees.leftJoin(graph.vertices)((vid, vd1, vd2)=>(vd2.get._1,vd1)).sortBy(_._2._2, false).collect

res35: Array[(org.apache.spark.graphx.VertexId, (String, Int))] = Array((3,(Xie Tingfeng,3)), (2,(Wang Fei,2)), (4,(Zhang Bozhi,2)), (5,(Chen Guanxi,2)), (1,(Li Yapeng,1)))


将sortBy放在后面,是因为sortBy会返回MappedRDD,丢失了VertexRDD的一些方法

直接拿vd2.get有点冒险,下面改成安全版本:

graph.degrees.leftJoin(graph.vertices)((vid, vd1, vd2)=>(vd2 match {case Some(vvd2) => (vvd2._1, vd1); case None => ("", vd1)})).sortBy(_._2._2, false).collect

测试一下消息机制,发送配偶信息给每个人:

graph.aggregateMessages({
(ctx:EdgeContext[(String, Boolean),String,String])=>
if(ctx.attr=="spouse"){
ctx.sendToSrc(ctx.dstAttr._1);
ctx.sendToDst(ctx.srcAttr._1)
}
}, ((s1:String,s2:String)=>s1+"|"+s2)).collect

res46: Array[(org.apache.spark.graphx.VertexId, String)] = Array((1,Wang Fei), (2,Li Yapeng|Xie Tingfeng), (3,Wang Fei|Zhang Bozhi), (4,Xie Tingfeng))

输出pagerank值:

import org.apache.spark.graphx.lib
graph.pageRank(0.01).vertices.collect.foreach(println)

(1,0.15)
(2,0.27749999999999997)
(3,0.38587499999999997)
(4,0.313996875)
(5,0.58089421875)

数一数每个艺人所处的三角关系:

graph.triangleCount.vertices.collect

res48: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((1,0), (2,0), (3,1), (4,1), (5,1))

### GraphX 学习过程中的常见问题及解决方案 #### 1. **GraphX 的安装配置问题** 在学习 GraphX 时,可能会遇到环境配置方面的问题。例如,在 Spark 集群上启用 GraphX 功能失败的情况。这通常是因为缺少必要的依赖项或版本不兼容。 - 确保使用的 Spark 版本支持 GraphX 组件[^2]。 - 如果使用的是 Maven 或 SBT 构建工具,则需确认 `pom.xml` 文件中包含了正确的依赖声明: ```xml <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-graphx_2.12</artifactId> <version>3.x.x</version> <!-- 替换为实际的 Spark 版本 --> </dependency> ``` #### 2. **图数据加载错误** 当尝试从外部文件(如 CSV 或 JSON)加载图数据到 GraphX 中时,可能因数据格式不符合预期而导致解析异常。 - 使用 `EdgeRDD` 和 `VertexRDD` 加载边和节点数据时,应严格遵循输入格式的要求。 - 示例代码如下: ```scala val vertices = sc.textFile("vertices.txt").map { line => val fields = line.split(",") (fields(0).toLong, fields(1)) } val edges = sc.textFile("edges.txt").map { line => val fields = line.split(",") Edge(fields(0).toLong, fields(1).toLong, fields(2).toDouble) } val graph = Graph(vertices, edges) ``` #### 3. **性能瓶颈** 对于大规模图数据集,GraphX 可能会面临内存不足或其他性能问题。这是由于 Spark 默认的分区策略可能导致负载不平衡。 - 调整分区数以优化数据分布: ```scala val partitionedGraph = graph.partitionBy(PartitionStrategy.RandomVertexCut) ``` - 同时可以通过调整 Spark 配置参数提升性能,例如增加 executor 内存分配或设置 shuffle 并行度[^1]。 #### 4. **算法实现困难** 初学者在使用 GraphX 实现复杂图算法(如 PageRank、连通分量等)时,可能会感到困惑。 - 利用内置 API 减少开发难度。例如,PageRank 计算可以直接调用: ```scala val ranks = graph.pageRank(0.0001).vertices ``` - 对于更复杂的场景,可借助 `aggregateMessages` 方法自定义消息传递逻辑。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值