64位Windows下安装xgboost详细参考指南(支持Python2.x和3.x)

本文提供了一种在Windows环境下安装xgboost的具体步骤,包括编译环境配置、源码编译、解决常见错误及Python环境兼容性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

20170601更新
1. 原博客在Python2.7环境下安装成功,xgboost版本为0.4,本次安装升级为0.6。

2. 在Python3.5/3.6环境中有一些问题,包括第一个python setup.py install报错,下面有更新说明。


3. 在Python3.5/3.6环境中,import xgboost as xgb会出现OSError: [WinError 1114] 动态链接库(DLL)初始化例程失败​。这个比较棘手,换个思路

 http://www.lfd.uci.edu/~gohlke/pythonlibs/下载 xgboost whl 文件 

注意要和本机版本匹配, 比如. "xgboost-0.6-cp35-cp35m-win_amd64.whl"说明安装的是python 3.5,机器是64位的。

下载地址是:


然后使用pip安装,具体安装步骤,参考下面的具体更新。


Windows下安装xgboost有时候很简单,有时候却很麻烦,一不小心,经常会报一些编译错误。这里是我的一点小经验,测试过两次,都能够正常运行,分享给大家,希望能够有帮助。如果是急用的,一刻也不想等的,直接到这篇文章的结尾,到【参考】5找人家在X64位下编译好的。

常见错误:
Makefile:97: recipe for target 'build/logging.o' failed
mingw32
-make: [build/logging.o] Error 1
mingw32
-make: Waiting for unfinished jobs....Makefile:97: recipe for target 'build/common/common.o' failed
mingw32
-make: [build/common/common.o] Error 1
cc1plus
.exe: sorry, unimplemented: 64-bit mode not compiled inMakefile:97: recipe for target 'build/learner.o' failed
mingw32
-make: [build/learner.o] Error 1Makefile:97: recipe for target 'build/c_api/c_api_error.o' failed
mingw32
-make: [build/c_api/c_api_error.o] Error 1

【第一步:准备环境】
因为中间涉及到一些编译工作,我们先准备一个编译环境。此处需要下载一个软件,从下面两个链接都可以下载:
该文件的描述是: The mingw-w64 project is a complete runtime environment for gcc to support binaries native to Windows 64-bit and 32-bit operating systems. 可以看出是一个gcc的运行环境。

【安装前必读】
1.选择x86-64架构,按照下图选择其他参数

2.安装该文件,需要注意的是,中间有一步需要手动选择。需要手动选择openmp,这个默认是不安装的,但是此处需要,点上。OpenMP(Open Multi-Processing)是一套支持跨平台共享内存方式的多线程并发的编程API,使用C,C++和Fortran语言,可以在大多数的处理器体系和操作系统中运行,包括Solaris, AIX, HP-UX, GNU/Linux, Mac OS X, 和Microsoft Windows。包括一套编译器指令、库和一些能够影响运行行为的环境变量。


3. 进入安装目录C:\TDM-GCC-64\bin(默认目录,如果自己修改了,自动去找这个目录就好)下,将mingw2-make改成make,以便后面用着方便,还有如果Path环境变量没有自动添加,把C:\TDM-GCC-64\bin这个安装目录加入环境变量(再次提醒自定义的改一下目录)

4. 如果没有Git的,此处也先下载安装,Git Shell的安装极为简单,可以自行百度或者Google。

5. 安装Python,推荐安装Anaconda。

【第二步,下载xgboost并编译】

首先,打开Git Shell,依次执行如下命令:

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
git checkout 9a48a40//新版本这一步可以省略
git submodule init
git submodule update

cp make/mingw64.mk config.mk
cp make/mingw64.mk dmlc-core/config.mk

cd  rabit
make lib/librabit_empty.a -j4

cd  ../dmlc-core
make -j4

cd ..
make -j4

【第三步,安装到Python包中】
cd python-package
python setup.py install

更新:
如果是Python3.x这个地方会报错
error: Error: setup script specifies an absolute path:
    C:\Users\yuhul\xgboost\python-package\xgboost\..\..\lib\libxgboost.dll
setup() arguments must *always* be /-separated paths relative to the
setup.py directory, *never* absolute paths.

需要把该目录下setup.py第38行include_package_data=True改为include_package_data=False


【第四步,导入xgboost包】
import xgboost as xgb
help(xgb)

更新:
import xgboost as xgb时报错:OSError: [WinError 1114] 动态链接库(DLL)初始化例程失败​。

这个地方Python3.x会报错,需要重新下载新的xgboost,替换Anaconda里面的老的xgboost。
在我的电脑中,D:\Anaconda3\Lib\site-packages目录下有xgboost-0.4-py3.5.egg这个目录,安装新的xgboost会删除掉它。
安装方法是进入下载的xgboost-0.6-cp35-cp35m-win_amd64.whl所在的目录,执行如下命令
pip install xgboost-0.6-cp35-cp35m-win_amd64.whl

说明,建议pip的版本在8.1以上,建议更新到最新版本9.0.2

【第五步,使用程序测试】
cd ..//或者直接进入xgboost目录
cd demo
cd guide-python
python basic_walkthrough.py

【参考】
6. https://stackoverflow.com/questions/33749735/how-to-install-xgboost-package-in-python-windows-platform/35119904#35119904
from autosklearn.regression import AutoSklearnRegressor from autosklearn.classification import AutoSklearnClassifier from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering from sklearn.feature_selection import RFECV from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score import numpy as np import pandas as pd import time from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, f1_score, accuracy_score, precision_score, recall_score, r2_score, mean_absolute_error, mean_squared_error from sklearn.preprocessing import StandardScaler from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor from xgboost import XGBClassifier, XGBRegressor from sklearn.svm import SVC from lightgbm import LGBMClassifier, LGBMRegressor from bayes_opt import BayesianOptimization from sklearn.utils import resample df_fire = pd.read_csv("gds_fire_30mm.csv") df_nofire = pd.read_csv("gds_nofire_30mm.csv") df = pd.concat([df_fire,df_nofire]) features = [&#39;system:index&#39;, &#39;days&#39;, &#39;evisum&#39;, &#39;ndwisum&#39;, &#39;ndvisum&#39;, &#39;lstsum&#39;, &#39;.geo&#39;, &#39;time&#39;] df = df.drop(features, axis = 1) df = df[df.apply(lambda row: row.isin([-99999.000000]).sum() == 0, axis=1)] # 加载数据集并进行标准化处理 X = df.drop([&#39;labels&#39;], axis = 1).values y = df[&#39;labels&#39;].values scaler = StandardScaler() X_scaled = scaler.fit_transform(X) X_resampled, y_resampled = resample(X_scaled, y, replace=True, n_samples=len(y==1), random_state=42) X_train_resampled, X_test_resampled, y_train_resampled, y_test_resampled = train_test_split(X_resampled, y_resampled, test_size=0.3, random_state=42) automl = AutoSklearnClassifier( time_left_for_this_task=120*5, per_run_time_limit=30, metric=autosklearn.metrics.accuracy, seed=42, resampling_strategy=&#39;cv&#39;, resampling_strategy_arguments={&#39;folds&#39;: 5} ) automl.fit(X_train_resampled, y_train_resampled) automl.leaderboard(detailed = True, ensemble_only=False) print(automl.sprint_statistics()) 报错:[ERROR] [2025-08-01 03:56:04,284:Client-AutoML(42):7119140d-6e8b-11f0-9494-024264400002] (&#39; Dummy prediction failed with run state StatusType.CRASHED and additional output: {\&#39;error\&#39;: \&#39;Result queue is empty\&#39;, \&#39;exit_status\&#39;: "<class \&#39;pynisher.limit_function_call.AnythingException\&#39;>", \&#39;subprocess_stdout\&#39;: \&#39;\&#39;, \&#39;subprocess_stderr\&#39;: \&#39;Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\&#39;, \&#39;exitcode\&#39;: 1, \&#39;configuration_origin\&#39;: \&#39;DUMMY\&#39;}.&#39;,) [ERROR] [2025-08-01 03:56:04,284:Client-AutoML(42):7119140d-6e8b-11f0-9494-024264400002] (&#39; Dummy prediction failed with run state StatusType.CRASHED and additional output: {\&#39;error\&#39;: \&#39;Result queue is empty\&#39;, \&#39;exit_status\&#39;: "<class \&#39;pynisher.limit_function_call.AnythingException\&#39;>", \&#39;subprocess_stdout\&#39;: \&#39;\&#39;, \&#39;subprocess_stderr\&#39;: \&#39;Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\&#39;, \&#39;exitcode\&#39;: 1, \&#39;configuration_origin\&#39;: \&#39;DUMMY\&#39;}.&#39;,) Traceback (most recent call last): File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py", line 765, in fit self._do_dummy_prediction() File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py", line 489, in _do_dummy_prediction raise ValueError(msg) ValueError: (&#39; Dummy prediction failed with run state StatusType.CRASHED and additional output: {\&#39;error\&#39;: \&#39;Result queue is empty\&#39;, \&#39;exit_status\&#39;: "<class \&#39;pynisher.limit_function_call.AnythingException\&#39;>", \&#39;subprocess_stdout\&#39;: \&#39;\&#39;, \&#39;subprocess_stderr\&#39;: \&#39;Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\&#39;, \&#39;exitcode\&#39;: 1, \&#39;configuration_origin\&#39;: \&#39;DUMMY\&#39;}.&#39;,) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[15], line 9 1 automl = AutoSklearnClassifier( 2 time_left_for_this_task=120*5, 3 per_run_time_limit=30, (...) 7 resampling_strategy_arguments={&#39;folds&#39;: 5} 8 ) ----> 9 automl.fit(X_train_resampled, y_train_resampled) 10 automl.leaderboard(detailed = True, ensemble_only=False) 11 print(automl.sprint_statistics()) File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/estimators.py:1448, in AutoSklearnClassifier.fit(self, X, y, X_test, y_test, feat_type, dataset_name) 1445 # remember target type for using in predict_proba later. 1446 self.target_type = target_type -> 1448 super().fit( 1449 X=X, 1450 y=y, 1451 X_test=X_test, 1452 y_test=y_test, 1453 feat_type=feat_type, 1454 dataset_name=dataset_name, 1455 ) 1457 # After fit, a classifier is expected to define classes_ 1458 # A list of class labels known to the classifier, mapping each label 1459 # to a numerical index used in the model representation our output. 1460 self.classes_ = self.automl_.InputValidator.target_validator.classes_ File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/estimators.py:540, in AutoSklearnEstimator.fit(self, **kwargs) 538 if self.automl_ is None: 539 self.automl_ = self.build_automl() --> 540 self.automl_.fit(load_models=self.load_models, **kwargs) 542 return self File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:2304, in AutoMLClassifier.fit(self, X, y, X_test, y_test, feat_type, dataset_name, only_return_configuration_space, load_models) 2293 def fit( 2294 self, 2295 X: SUPPORTED_FEAT_TYPES, (...) 2302 load_models: bool = True, 2303 ) -> AutoMLClassifier: -> 2304 return super().fit( 2305 X, 2306 y, 2307 X_test=X_test, 2308 y_test=y_test, 2309 feat_type=feat_type, 2310 dataset_name=dataset_name, 2311 only_return_configuration_space=only_return_configuration_space, 2312 load_models=load_models, 2313 is_classification=True, 2314 ) File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:962, in AutoML.fit(self, X, y, task, X_test, y_test, feat_type, dataset_name, only_return_configuration_space, load_models, is_classification) 959 except Exception as e: 960 # This will be called before the _fit_cleanup 961 self._logger.exception(e) --> 962 raise e 963 finally: 964 self._fit_cleanup() File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:765, in AutoML.fit(self, X, y, task, X_test, y_test, feat_type, dataset_name, only_return_configuration_space, load_models, is_classification) 763 with self._stopwatch.time("Dummy predictions"): 764 self.num_run += 1 --> 765 self._do_dummy_prediction() 767 # == RUN ensemble builder 768 # Do this before calculating the meta-features to make sure that the 769 # dummy predictions are actually included in the ensemble even if 770 # calculating the meta-features takes very long 771 with self._stopwatch.time("Run Ensemble Builder"): File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:489, in AutoML._do_dummy_prediction(self) 483 msg = ( 484 f" Dummy prediction failed with run state {status} and" 485 f" additional output: {additional_info}.", 486 ) 488 self._logger.error(msg) --> 489 raise ValueError(msg) 491 return ValueError: (&#39; Dummy prediction failed with run state StatusType.CRASHED and additional output: {\&#39;error\&#39;: \&#39;Result queue is empty\&#39;, \&#39;exit_status\&#39;: "<class \&#39;pynisher.limit_function_call.AnythingException\&#39;>", \&#39;subprocess_stdout\&#39;: \&#39;\&#39;, \&#39;subprocess_stderr\&#39;: \&#39;Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\&#39;, \&#39;exitcode\&#39;: 1, \&#39;configuration_origin\&#39;: \&#39;DUMMY\&#39;}.&#39;,)
最新发布
08-02
asttokens 3.0.0 pyhd8ed1ab_1 conda-forge backcall 0.2.0 pyh9f0ad1d_0 conda-forge ca-certificates 2025.6.15 h4c7d964_0 conda-forge certifi 2025.6.15 pypi_0 pypi charset-normalizer 3.4.2 pypi_0 pypi colorama 0.4.6 pyhd8ed1ab_1 conda-forge comm 0.2.2 pyhd8ed1ab_1 conda-forge contourpy 1.3.0 pypi_0 pypi cycler 0.12.1 pypi_0 pypi deap 1.4.3 pypi_0 pypi debugpy 1.8.11 py39h5da7b33_0 decorator 5.2.1 pyhd8ed1ab_0 conda-forge executing 2.2.0 pyhd8ed1ab_0 conda-forge fonttools 4.58.5 pypi_0 pypi idna 3.10 pypi_0 pypi importlib-metadata 8.7.0 pyhe01879c_1 conda-forge importlib-resources 6.5.2 pypi_0 pypi ipykernel 6.29.5 pyh4bbf305_0 conda-forge ipython 8.12.0 pyh08f2357_0 conda-forge jedi 0.19.2 pyhd8ed1ab_1 conda-forge joblib 1.5.1 pypi_0 pypi json5 0.12.0 pypi_0 pypi jupyter_client 8.6.3 pyhd8ed1ab_1 conda-forge jupyter_core 5.7.2 py39hcbf5309_0 conda-forge kiwisolver 1.4.7 pypi_0 pypi libsodium 1.0.18 h8d14728_1 conda-forge lightgbm 4.5.0 pypi_0 pypi matplotlib 3.5.1 pypi_0 pypi matplotlib-inline 0.1.7 pyhd8ed1ab_1 conda-forge nest-asyncio 1.6.0 pyhd8ed1ab_1 conda-forge numpy 1.23.0 pypi_0 pypi openssl 3.0.16 h3f729d1_0 packaging 25.0 pyh29332c3_1 conda-forge pandas 2.3.0 pypi_0 pypi parso 0.8.4 pyhd8ed1ab_1 conda-forge patsy 1.0.1 pypi_0 pypi pickleshare 0.7.5 pyhd8ed1ab_1004 conda-forge pillow 11.3.0 pypi_0 pypi pip 25.1 pyhc872135_2 platformdirs 4.3.8 pyhe01879c_0 conda-forge prompt-toolkit 3.0.51 pyha770c72_0 conda-forge prompt_toolkit 3.0.51 hd8ed1ab_0 conda-forge psutil 5.9.0 py39h827c3e9_1 pure_eval 0.2.3 pyhd8ed1ab_1 conda-forge pyaml 25.5.0 pypi_0 pypi pygments 2.19.2 pyhd8ed1ab_0 conda-forge pyparsing 3.2.3 pypi_0 pypi python 3.9.21 h8205438_1 python-dateutil 2.9.0.post0 pyhe01879c_2 conda-forge python_abi 3.9 2_cp39 conda-forge pytz 2025.2 pypi_0 pypi pywin32 308 py39h5da7b33_0 pyyaml 6.0.2 pypi_0 pypi pyzmq 24.0.1 py39hea35a22_1 conda-forge requests 2.32.4 pypi_0 pypi scikit-learn 1.5.0 pypi_0 pypi scikit-optimize 0.10.2 pypi_0 pypi scipy 1.13.1 pypi_0 pypi seaborn 0.13.2 pypi_0 pypi setuptools 78.1.1 py39haa95532_0 six 1.17.0 pyhd8ed1ab_0 conda-forge skorch 1.1.0 pypi_0 pypi sqlite 3.45.3 h2bbff1b_0 stack_data 0.6.3 pyhd8ed1ab_1 conda-forge statsmodels 0.14.4 pypi_0 pypi tabulate 0.9.0 pypi_0 pypi threadpoolctl 3.6.0 pypi_0 pypi torch 1.12.0+cu113 pypi_0 pypi torchaudio 0.12.0+cu113 pypi_0 pypi torchvision 0.13.0+cu113 pypi_0 pypi tornado 6.2 py39ha55989b_1 conda-forge tqdm 4.67.1 pypi_0 pypi traitlets 5.14.3 pyhd8ed1ab_1 conda-forge typing_extensions 4.14.1 pyhe01879c_0 conda-forge tzdata 2025.2 pypi_0 pypi ucrt 10.0.22621.0 h57928b3_1 conda-forge urllib3 2.5.0 pypi_0 pypi vc 14.42 haa95532_5 vs2015_runtime 14.42.34433 hbfb602d_5 wcwidth 0.2.13 pyhd8ed1ab_1 conda-forge wheel 0.45.1 py39haa95532_0 xgboost 2.1.4 pypi_0 pypi zeromq 4.3.4 h0e60522_1 conda-forge zipp 3.23.0 pyhd8ed1ab_0 conda-forge这是我的环境配置,指导我安装cuml库
07-12
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值