from autosklearn.regression import AutoSklearnRegressor
from autosklearn.classification import AutoSklearnClassifier
from sklearn.cluster import KMeans, SpectralClustering, AgglomerativeClustering
from sklearn.feature_selection import RFECV
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import numpy as np
import pandas as pd
import time
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, f1_score, accuracy_score, precision_score, recall_score, r2_score, mean_absolute_error, mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor
from xgboost import XGBClassifier, XGBRegressor
from sklearn.svm import SVC
from lightgbm import LGBMClassifier, LGBMRegressor
from bayes_opt import BayesianOptimization
from sklearn.utils import resample
df_fire = pd.read_csv("gds_fire_30mm.csv")
df_nofire = pd.read_csv("gds_nofire_30mm.csv")
df = pd.concat([df_fire,df_nofire])
features = ['system:index', 'days', 'evisum', 'ndwisum', 'ndvisum', 'lstsum', '.geo', 'time']
df = df.drop(features, axis = 1)
df = df[df.apply(lambda row: row.isin([-99999.000000]).sum() == 0, axis=1)]
# 加载数据集并进行标准化处理
X = df.drop(['labels'], axis = 1).values
y = df['labels'].values
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_resampled, y_resampled = resample(X_scaled, y, replace=True, n_samples=len(y==1), random_state=42)
X_train_resampled, X_test_resampled, y_train_resampled, y_test_resampled = train_test_split(X_resampled, y_resampled, test_size=0.3, random_state=42)
automl = AutoSklearnClassifier(
time_left_for_this_task=120*5,
per_run_time_limit=30,
metric=autosklearn.metrics.accuracy,
seed=42,
resampling_strategy='cv',
resampling_strategy_arguments={'folds': 5}
)
automl.fit(X_train_resampled, y_train_resampled)
automl.leaderboard(detailed = True, ensemble_only=False)
print(automl.sprint_statistics())
报错:[ERROR] [2025-08-01 03:56:04,284:Client-AutoML(42):7119140d-6e8b-11f0-9494-024264400002] (' Dummy prediction failed with run state StatusType.CRASHED and additional output: {\'error\': \'Result queue is empty\', \'exit_status\': "<class \'pynisher.limit_function_call.AnythingException\'>", \'subprocess_stdout\': \'\', \'subprocess_stderr\': \'Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\', \'exitcode\': 1, \'configuration_origin\': \'DUMMY\'}.',)
[ERROR] [2025-08-01 03:56:04,284:Client-AutoML(42):7119140d-6e8b-11f0-9494-024264400002] (' Dummy prediction failed with run state StatusType.CRASHED and additional output: {\'error\': \'Result queue is empty\', \'exit_status\': "<class \'pynisher.limit_function_call.AnythingException\'>", \'subprocess_stdout\': \'\', \'subprocess_stderr\': \'Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\', \'exitcode\': 1, \'configuration_origin\': \'DUMMY\'}.',)
Traceback (most recent call last):
File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py", line 765, in fit
self._do_dummy_prediction()
File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py", line 489, in _do_dummy_prediction
raise ValueError(msg)
ValueError: (' Dummy prediction failed with run state StatusType.CRASHED and additional output: {\'error\': \'Result queue is empty\', \'exit_status\': "<class \'pynisher.limit_function_call.AnythingException\'>", \'subprocess_stdout\': \'\', \'subprocess_stderr\': \'Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\', \'exitcode\': 1, \'configuration_origin\': \'DUMMY\'}.',)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[15], line 9
1 automl = AutoSklearnClassifier(
2 time_left_for_this_task=120*5,
3 per_run_time_limit=30,
(...)
7 resampling_strategy_arguments={'folds': 5}
8 )
----> 9 automl.fit(X_train_resampled, y_train_resampled)
10 automl.leaderboard(detailed = True, ensemble_only=False)
11 print(automl.sprint_statistics())
File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/estimators.py:1448, in AutoSklearnClassifier.fit(self, X, y, X_test, y_test, feat_type, dataset_name)
1445 # remember target type for using in predict_proba later.
1446 self.target_type = target_type
-> 1448 super().fit(
1449 X=X,
1450 y=y,
1451 X_test=X_test,
1452 y_test=y_test,
1453 feat_type=feat_type,
1454 dataset_name=dataset_name,
1455 )
1457 # After fit, a classifier is expected to define classes_
1458 # A list of class labels known to the classifier, mapping each label
1459 # to a numerical index used in the model representation our output.
1460 self.classes_ = self.automl_.InputValidator.target_validator.classes_
File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/estimators.py:540, in AutoSklearnEstimator.fit(self, **kwargs)
538 if self.automl_ is None:
539 self.automl_ = self.build_automl()
--> 540 self.automl_.fit(load_models=self.load_models, **kwargs)
542 return self
File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:2304, in AutoMLClassifier.fit(self, X, y, X_test, y_test, feat_type, dataset_name, only_return_configuration_space, load_models)
2293 def fit(
2294 self,
2295 X: SUPPORTED_FEAT_TYPES,
(...)
2302 load_models: bool = True,
2303 ) -> AutoMLClassifier:
-> 2304 return super().fit(
2305 X,
2306 y,
2307 X_test=X_test,
2308 y_test=y_test,
2309 feat_type=feat_type,
2310 dataset_name=dataset_name,
2311 only_return_configuration_space=only_return_configuration_space,
2312 load_models=load_models,
2313 is_classification=True,
2314 )
File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:962, in AutoML.fit(self, X, y, task, X_test, y_test, feat_type, dataset_name, only_return_configuration_space, load_models, is_classification)
959 except Exception as e:
960 # This will be called before the _fit_cleanup
961 self._logger.exception(e)
--> 962 raise e
963 finally:
964 self._fit_cleanup()
File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:765, in AutoML.fit(self, X, y, task, X_test, y_test, feat_type, dataset_name, only_return_configuration_space, load_models, is_classification)
763 with self._stopwatch.time("Dummy predictions"):
764 self.num_run += 1
--> 765 self._do_dummy_prediction()
767 # == RUN ensemble builder
768 # Do this before calculating the meta-features to make sure that the
769 # dummy predictions are actually included in the ensemble even if
770 # calculating the meta-features takes very long
771 with self._stopwatch.time("Run Ensemble Builder"):
File /opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/automl.py:489, in AutoML._do_dummy_prediction(self)
483 msg = (
484 f" Dummy prediction failed with run state {status} and"
485 f" additional output: {additional_info}.",
486 )
488 self._logger.error(msg)
--> 489 raise ValueError(msg)
491 return
ValueError: (' Dummy prediction failed with run state StatusType.CRASHED and additional output: {\'error\': \'Result queue is empty\', \'exit_status\': "<class \'pynisher.limit_function_call.AnythingException\'>", \'subprocess_stdout\': \'\', \'subprocess_stderr\': \'Process pynisher function call:\\nTraceback (most recent call last):\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap\\n self.run()\\n File "/opt/conda/envs/mmedu/lib/python3.8/multiprocessing/process.py", line 108, in run\\n self._target(*self._args, **self._kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/pynisher/limit_function_call.py", line 133, in subprocess_func\\n return_value = ((func(*args, **kwargs), 0))\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/__init__.py", line 55, in fit_predict_try_except_decorator\\n return ta(queue=queue, **kwargs)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 1386, in eval_cv\\n evaluator = TrainEvaluator(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/train_evaluator.py", line 206, in __init__\\n super().__init__(\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/autosklearn/evaluation/abstract_evaluator.py", line 215, in __init__\\n threadpool_limits(limits=1)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 794, in __init__\\n super().__init__(ThreadpoolController(), limits=limits, user_api=user_api)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 587, in __init__\\n self._set_threadpool_limits()\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 720, in _set_threadpool_limits\\n lib_controller.set_num_threads(num_threads)\\n File "/opt/conda/envs/mmedu/lib/python3.8/site-packages/threadpoolctl.py", line 199, in set_num_threads\\n return set_num_threads_func(num_threads)\\nKeyboardInterrupt\\n\', \'exitcode\': 1, \'configuration_origin\': \'DUMMY\'}.',)
最新发布