Ubuntu 12.04下Deepnet配置

1、下载Deepnet,解压并仔细阅读目录下的INSTALL.txt文件。

2、安装Numpy和nose,如在终端上执行:

$ sudo apt-get install python3-numpy

3、安装CUDA

4、设置关于CUDA的环境变量,修改文件,如在~/.bashrc 中添加如下内容:

      export CUDA_BIN=/usr/local/cuda-5.0/bin
      export CUDA_LIB=/usr/local/cuda-5.0/lib64
      export PATH=${CUDA_BIN}:$PATH
      export LD_LIBRARY_PATH=${CUDA_LIB}:$LD_LIBRARY_PATH

6、下载、编译安装Protocol Buffers

下载2.5.0版,解压并在目录底下安装编译

$ ./configure  
$ make  
$ make check  
$ make install 

$ sudo mkdir google/protobuf/compiler

$sudo python setup.py install  

在~/.bashrc 末尾中添加以下内容:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib  


7、到cudamat目录下用make命令编译cudamat并测试examples下的py例子是否完全可以运行,测试nn_cudamat.py发现会有模块加载失败的提示,根据网上的做法,下载cudamat文件并make编译,将编译得到的learn.py、learn.pyc和 libcudalearn.so 复制到deepnet/cudamat/目录内。将nn_cudamat.py内的

from cudamat import learn as cl
改为

import learn as cl

后可成功运行nn_cudamat.py。之后遇到其它类似情况可做类似修改。

8、设置关于cudamat和deepnet的环境变量,如在~/.bashrc 添加如下类似内容

  export PATH=/home/weiliu/SOFT/deepnet/cudamat:$PATH
  export LD_LIBRARY_PATH=/home/SOFT/deepnet/cudamat:$LD_LIBRARY_PATH
  export PYTHONPATH=${PYTHONPATH}:/home/deepnet/cudamat
  export PYTHONPATH=$PYTHONPATH:/home/deepnet

9、下载MNIST数据集,cd到deepnet/deepnet/examples目录下运行

 $ python setup_examples.py  <path to mnist dataset>  <output path>

这句主要是配置数据集和输出文件的位置。到examples下的任一目录执行可执行文件runall.sh,如在deepnet/deepnet/examples/rbm下执行:

$ sh runall.sh



PS:

1.如果CUDA版本为6.5及以上,make cudamat时会遇到错误需要修改cudamat下的makefile文件


all: libcudamat.so libcudamat_conv.so


libcudamat.so: cudamat.cu cudamat_kernels.cu cudamat.cuh cudamat_kernels.cuh
nvcc -O3 \
-v \
 -gencode=arch=compute_20,code=sm_20 \
-gencode=arch=compute_30,code=sm_30 \
-gencode=arch=compute_35,code=sm_35 \
-gencode=arch=compute_50,code=sm_50 \

--compiler-options '-fPIC' -o libcudamat.so \
--shared cudamat.cu cudamat_kernels.cu -lcublas -L$(CUDA_LIB)


libcudamat_conv.so: cudamat_conv.cu cudamat_conv_kernels.cu cudamat_conv.cuh cudamat.cuh cudamat_conv_kernels.cuh
nvcc -O3 \
-v \
 -gencode=arch=compute_20,code=sm_20 \
-gencode=arch=compute_30,code=sm_30 \
--compiler-options '-fPIC' -o libcudamat_conv.so \
--shared cudamat_conv.cu cudamat_conv_kernels.cu -lcublas -L$(CUDA_LIB)

clean:
rm -rf *.so


即增加了两行红色的内容,并且去掉了 -gencode=arch=compute_10,code=sm_10 \



参考

http://blog.csdn.net/kkk3016/article/details/17889495

http://blog.sina.com.cn/s/blog_6bb5e91b0102v0hj.html

http://blog.csdn.net/llx1990rl/article/details/41699351

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值