弗罗莱(Fleury)算法 欧拉(Euler)通路/回路

转载 2017年01月02日 22:52:08

转载地址:http://blog.csdn.net/zyy617532750/article/details/50981888


1、基本概念:

1)欧拉图的基本概念:

欧拉通路 (欧拉迹):通过图中每条边一次且仅一次,并且过每一顶点的通路。

欧拉回路 (欧拉闭迹):通过图中每条边一次且仅一次,并且过每一顶点的回路。

欧拉图:存在欧拉回路的图。欧拉图就是从一顶点出发每条边恰通过一次又能回到出发顶点的那种图,即不重复的行遍所有的边再回到出发点。

通路和回路:vie1e2…envj为一条从 vi vj且长度为n通路,其中长度是指通路中边的条数.称起点和终点相同的通路为一条回路

简单图:不含平行边和自回路的图。

混合图:既有有向边,也有无向边的图

平凡图:仅有一个结点的图

完全图:n个结点的且每对结点都有边相连的无向简单图,称为无向完全图;有n个结点的且每对结点之间都有两条方向相反的边相连的有向简单图为有向完全图。

2)欧拉图的特征:
 
无向图

aG有欧拉通路的充分必要条件为:连通,G中只有两个奇度顶点(它们分别是欧拉通路的两个端点)

bG有欧拉回路(G为欧拉图)G连通,G中均为偶度顶点。 
 
有向图

aD有欧拉通路:D连通,除两个顶点外,其余顶点的入度均等于出度,这两个特殊的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1

bD有欧拉回路(D为欧拉图)D连通,D中所有顶点的入度等于出度。一个有向图是欧拉图,当且仅当该图所有顶点度数都是0

2、弗罗莱(Fleury)算法思想-解决欧拉回路

    Fleury算法
   
任取v0V(G),令P0=v0

Pi=v0e1v1e2ei vi已经行遍,按下面方法从中选取ei+1

aei+1vi相关联;

b)除非无别的边可供行遍,否则ei+1不应该为Gi=G-{e1,e2, , ei}中的桥(所谓桥是一条删除后使连通图不再连通的边);

c)当(b)不能再进行时,算法停止。

可以证明,当算法停止时所得的简单回路Wm=v0e1v1e2.emvm(vm=v0)G中的一条欧拉回路,复杂度为O(e*e)

3、欧拉算法C语言描述

  1. void DFS(Graph &G,SqStack &S,int x,int t)  
  2. {  
  3.        k=0;//一个标志,来标记当前访问的节点是否还有邻接边可供访问  
  4.        Push(S,x); //将本次遍历边所经由的点入栈  
  5.        for(i=t;i<v;i++) //v是顶点数,e是边数  
  6.         if(G[i][x]>0)    
  7.          {  
  8.           k=1;  
  9.           G[i][x]=0; G[x][i]=0; //此边已访问,删除此边  
  10.           DFS(G,S,i,0);//寻找下一条关联的边,本次找到的是与x关联的i,在  
  11.                         //下一层中将寻找与i关联的边  
  12.           break;  
  13.          }//if,for  
  14.        if(k==0)       //如果k=0,说明与当前顶点关联的边已穷尽  
  15.        {  
  16.               Pop(S);  
  17.               GetTop(S,m);  
  18.               G[x][m]=1;G[m][x]=1;//恢复在上一层中被删除的边  
  19.               a=x+1;//如果可能的话,从当前节点的下一条关联边开始搜寻  
  20.               if(StackLength(S)!=e)//继续搜寻,边还没有全部遍历完  
  21.               {  
  22.                      Pop(S); //还原到上一步去  
  23.                      DFS(G,S,m,a);//  
  24.               }//if  
  25.               else   //搜寻完毕,将最后节点也入栈  
  26.                      Push(S,x);  
  27.        }//if  
  28. }//DFS  
  29.    
  30. void Euler(Graph &G,int x)  
  31. {  
  32. //G是存储图的邻接矩阵,都处理成无向图形式,值为1代表有边,0代表无边,不包括自回路,x是出发点  
  33. InitStack(S);//用来存放遍历边时依次走过的顶点  
  34. DFS(G,S,x,0);//深度优先遍历查找,0是指查询的起点  
  35. //输出  
  36.  while(!StackEmpty(S))  
  37.  {  
  38.   GetTop(S,m);  
  39.   printf("->v%d",m);  
  40.   Pop(S);  
  41.  }//while  
  42. }//Euler</span>  

如下为算法的图示动态过程:

13、弗罗莱(Fleury)算法,求欧拉(Euler)通路/回路 - 墨涵 - 墨涵天地

4、欧拉算法的C实现

  1. #include "SqStack.h" //堆栈的常见操作  
  2. #include "Queue.h"//队列的常见操作  
  3.    
  4. typedef int Graph[200][200];  
  5. int v,e;  
  6.    
  7. void DFS(Graph &G,SqStack &S,int x,int t)  
  8. {  
  9.        int k=0,i,m,a;  
  10.        Push(S,x);  
  11.        for(i=t;i<v;i++)  
  12.               if(G[i][x]>0)  
  13.               {  
  14.                      k=1;  
  15.                      G[i][x]=0; //删除此边  
  16.                      G[x][i]=0;  
  17.                      DFS(G,S,i,0);  
  18.                      break;  
  19.               }//if,for  
  20.        if(k==0)  
  21.        {  
  22.               Pop(S);  
  23.               GetTop(S,m);  
  24.               G[x][m]=1;//恢复刚刚删除的边  
  25.               G[m][x]=1;  
  26.               a=x+1;//从下一条边开始搜寻  
  27.               if(StackLength(S)!=e)  
  28.               {  
  29.                      Pop(S);  
  30.                      DFS(G,S,m,a);  
  31.               }//if  
  32.               else  
  33.                      Push(S,x);  
  34.        }//if  
  35. }//DFS  
  36.    
  37. int BFSTest(Graph G)  
  38. {  
  39.        int a[200],x,i,k=0;  
  40.        LinkQueue Q;  
  41.        InitQueue(Q);  
  42.        EnQueue(Q,0);  
  43.        for(i=0;i<v;i++)  
  44.               a[i]=0;  
  45.        a[0]=1;  
  46.        while(!QueueEmpty(Q))  
  47.        {  
  48.               DeQueue(Q,x);  
  49.               for(i=0;i<v;i++)  
  50.                      if(G[x][i]>0)  
  51.                             if(a[i]!=1)  
  52.                             {  
  53.                                    a[i]=1;  
  54.                                    EnQueue(Q,i);  
  55.                             }//if  
  56.        }//while  
  57.        for(i=0;i<v;i++)  
  58.               if(a[i]==0)  
  59.               {  
  60.                      k=1;  
  61.                      break;  
  62.               }  
  63.        if(k==1)  
  64.               return 0;  
  65.        else  
  66.               return 1;  
  67. }  
  68.    
  69. void Euler(Graph &G,int x)  
  70. {  
  71.        int m;  
  72.        SqStack S;  
  73.        InitStack(S);  
  74.        DFS(G,S,x,0);  
  75.        printf("该图的一个欧拉回路为:");  
  76.        while(!StackEmpty(S))  
  77.        {  
  78.               GetTop(S,m);  
  79.               printf("->v%d",m);  
  80.               Pop(S);  
  81.        }//while  
  82. }  
  83.    
  84. void InputM1(Graph &G)  
  85. {  
  86.    
  87. int h,z;  
  88. printf("Please input 顶点数和边数\n");  
  89. scanf("%d",&v);  
  90. scanf("%d",&e);  
  91. for(int i=0;i<v;i++)  
  92.        for(int j=0;j<v;j++)  
  93.               G[i][j]=0;  
  94.    
  95. printf("please int the 邻接矩阵的值(起点(数字) 终点(数字)):\n");  
  96. for(int i=0;i<e;i++)  
  97.   {  
  98.        scanf("%d",&h);  
  99.        scanf("%d",&z);  
  100.        G[h-1][z-1]=1;  
  101.           G[z-1][h-1]=1;  
  102.   }//for  
  103. }//InputM1  
  104.    
  105. int main()  
  106. {  
  107.        int i,j,sum,k=0;  
  108.        Graph G;  
  109.        InputM1(G);  
  110.        if(BFSTest(G)==0)  
  111.        {  
  112.               printf("该图不是连通图!\n");  
  113.               exit(0);  
  114.        }//if  
  115.        for(i=0;i<v;i++)  
  116.        {  
  117.               sum=0;  
  118.               for(j=0;j<v;j++)  
  119.                      sum+=G[i][j];  
  120.               if(sum%2==1)  
  121.               {     k=1;  
  122.                      break;  
  123.               }//if  
  124.        }//for  
  125.        if(k==1) printf("该图不存在欧拉回路!\n");  
  126.        else  
  127.               Euler(G,0); //从那个点出发  
  128. return 1;  
  129. }  
  1. 顶点数5,边数为6  
  2. 相关联的点1 2  
  3.           1 3  
  4.           2 5  
  5.           4 2  
  6.           3 2  
  7.           4 5  

5、小常识:欧拉算法的起由及一笔画问题

七桥问题18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的一笔画问题,证明上述走法是不可能的。

13、弗罗莱(Fleury)算法,求欧拉(Euler)通路/回路 - 墨涵 - 墨涵天地

一笔划

⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。

⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)

举报

相关文章推荐

弗罗莱(Fleury)算法,求欧拉(Euler)通路/回路

1、基本概念: (1)定义 欧拉通路 (欧拉迹)—通过图中每条边一次且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹)—通过图中每条边一次且仅一次,并且过每一顶点的回路。 欧拉图—存在欧...

弗罗莱(fleury)算法-欧拉回路生成算法

弗罗莱算法是生成欧拉回路的算法之一,今天在
  • zjx409
  • zjx409
  • 2014-04-08 22:57
  • 3571

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

CF 288DIV2 D - Tanya and Password (弗罗莱算法求欧拉通路)

旭哥的弗罗莱讲解 http://www.cnblogs.com/Lyush/archive/2013/04/22/3036659.html 有关欧拉通路的定理: http://wen...

fleury算法求欧拉路径(欧拉回路)模板

欧拉回路

Fleury算法求欧拉路径

Fleury算法求欧拉路径 列出一些有关欧拉的题 混合图欧拉回路  poj1637,zju1992,hdu3472 1HDU 3018 Ant Trip 2POJ 1041 John's trip 3...

hihoCoder - 1181 - 欧拉路·二 (Fleury算法求欧拉路径)

#1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了...

【Codeforces Round 375 (Div 2) E】【欧拉回路Fleury算法 或网络流】One-Way Reform 每条边定向使得最多的点满足入度=出度

E. One-Way Reform time limit per test 2 seconds memory limit per test 256 megabytes ...

Fleury算法求欧拉路径

分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了。 小Hi:哎,我就知道你会遇到问题。 小...

欧拉回路&Fleury算法&实现

本文介绍了欧拉回路判断的一些基本知识,以及使用并查集进行联通判断的策略,同时介绍了Fleury算法寻找欧拉回路的思路和实现。
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)