# 林薇薇 鄭大世 林大佑 費顧漫
# 8500 9800 12500 15000
# 採購員 主任 經理 總裁
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man")
salary <- c(8500, 9800, 12500, 15000)
jobPosition <- c("Staff", "Manger", "BOSS", "CEO")
1. Vector
print(userName)
print(salary)
print(jobPosition)
Vector output result:
[1] "Lam Wei Wei" "Zheng Da Shi" "Lin Da You" "Fei Gu Man"
[1] 8500 9800 12500 15000
[1] "Staff" "Manger" "BOSS" "CEO"
2. List
list1 <- list(userName, salary, jobPosition)
print(list1)
List output result:
[1] "Lam Wei Wei" "Zheng Da Shi" "Lin Da You" "Fei Gu Man"
[1] 8500 9800 12500 15000
[1] "Staff" "Manger" "BOSS" "CEO"
3. Matrices
MixInfo = c(userName, salary, jobPosition)
M = matrix( MixInfo, nrow = 3, ncol = 4, byrow = TRUE)
print(M)
Matrices output result:
[,1] [,2] [,3] [,4]
[1,] "Lam Wei Wei" "Zheng Da Shi" "Lin Da You" "Fei Gu Man"
[2,] "8500" "9800" "12500" "15000"
[3,] "Staff" "Manger" "BOSS" "CEO"
4. Arrays
和Matrices不同的地方,是Matrices不能有Null Cell。而Arrays的Null Cell會自動填補。Arrays的數值是從上到下填補。
a <- array(c(userName, salary, jobPosition),dim = c(4,3,2))
print(a)
Arrays output result:
[,1] [,2] [,3]
[1,] "Lam Wei Wei" "8500" "Staff"
[2,] "Zheng Da Shi" "9800" "Manger"
[3,] "Lin Da You" "12500" "BOSS"
[4,] "Fei Gu Man" "15000" "CEO"
, , 2
[,1] [,2] [,3]
[1,] "Lam Wei Wei" "8500" "Staff"
[2,] "Zheng Da Shi" "9800" "Manger"
[3,] "Lin Da You" "12500" "BOSS"
[4,] "Fei Gu Man" "15000" "CEO"
5. Factors
Factors是把Vector獨立地儲存、用於靜態數據、不可變變量。即Java的Static。
假設工資調整的情況下、林大佑工次上升至15000HKD。
userName <- c("Lam Wei Wei", "Zheng Da Shi", "Lin Da You", "Fei Gu Man")
salary <- c(8500, 9800, 15000, 15000)
jobPosition <- c("Staff", "Manger", "BOSS", "CEO")
Factors output result:
從nlevels可看到只有3個工資值、分別有8500, 9800, 15000。
factor_salary <- factor(salary)
print(factor_salary)
print(nlevels(factor_salary))
[1] 8500 9800 15000 15000
Levels: 8500 9800 15000
[1] 3
6. Data Frames
和Matrices不同的地方是、Data Frames在column里能儲存不同類型的數值、像numeric、character、column。
staff <- data.frame(userName, salary, jobPosition)
print(staff)
Factors output result:
userName salary jobPosition
1 Lam Wei Wei 8500 Staff
2 Zheng Da Shi 9800 Manger
3 Lin Da You 12500 BOSS
4 Fei Gu Man 15000 CEO