Selective Search for Object Recognition

本文介绍了选择性搜索(Selective Search)方法,结合了分割和蛮力搜索策略,用于减少物体识别的搜索空间。文章详细阐述了分层分组、颜色模型、相似性准则、纹理计算以及填充度等关键概念,并探讨了如何使用选择性搜索进行物体识别的训练与迭代。最终,通过评价标准ABO和MABO评估了方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近被老师弄去做图像方向,完全没相关经验,都是从论文看起。之后会整理我看的一系列论文,可能会有很多错误的地方,如果有发现,欢迎提出!

很多人问要代码,在文章结尾有分享。


Selective Search for Object Recognition

是J.R.R. Uijlings发表在2012 IJCV上的一篇文章。主要介绍了选择性搜索(Selective Search)的方法。选择性搜索综合了蛮力搜索(exhaustive search)和分割(segmentation)的方法。选择性搜索意在找出可能的目标位置来进行物体的识别。与传统的单一策略相比,选择性搜索提供了多种策略,并且与蛮力搜索相比,大幅度降低搜索空间,让我们可以用到更好的识别算法。

现实中,很多图像是包含多类别,多层次的信息的,如上图。所以我们要用到多层分割的方法,并且要用多种分割策略。

(一)选择性搜索(selectivesearch)

1.      分层分组:区域包含的信息比像素多,所以我们的特征是基于区域的。为了得到一些小的初始化的区域,用的是[13]中区域划分的方法。

[13]具体看http://blog.sciencenet.cn/blog-261330-722530.html

然后我们的分层分组算法如下&#

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值