Tensorflow版TextCNN主要代码解析

本文转载自:http://blog.csdn.net/u013818406/article/details/69530762

上一篇转载了一些大规模文本分类的方法,其中就有TextCNN,这篇博客就主要解析一下Tensorflow版TextCNN的主要代码。

[python]  view plain  copy
  1. import tensorflow as tf  
  2. import numpy as np  
  3.   
  4.   
  5. class TextCNN(object):  
  6.     """ 
  7.     A CNN for text classification. 
  8.     Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer. 
  9.     """  
  10.     def __init__(  
  11.       self, sequence_length, num_classes, vocab_size,  
  12.       embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):  
首先导入了tensorflow与numpy包,然后代码主要是建立一个可复用的TextCNN类,类的初始化参数

sequence_length:CNN需要固定输入与输出,所以每个句子的输入都是定长*词向量长度,定长一般设为最大句子长度,如果输入的句子词数没到定长就补充零,补充的零对后面的结果没有影响,因为后面的max-pooling只会输出最大值,补零的项会被过滤掉

num_classes:输出的文本类别总数也就是文本中有几个类别

vocab_size:字典大小,在之前的文本预处理阶段需要对文本进行分词与对单词进行编号,在训练的时候也是输入单词的id然后再词向量化,字典大小用通俗的话来说就是文本中出现了多少个词

embedding_size:嵌入长度,指的是词向量长度也就是用一个多大维的向量来表示词语,一般来说根据文本的规模定词向量的维度大小,样本数太少时使用较大维的词向量会造成难以收敛与容易过拟合的问题,有的TextCNN在这里会有一些区别,有的会采用固定的word2vec、fasttext、glove预先训练好的词向量

filter_sizes:卷积核大小的List,TextCNN里面的卷积和大小其实对应了传统NLP的n元语法的概念,这里的卷积核都是filter_size*embedding_size,其实就是filter_size个词作为一个整体来考虑,也可以理解为中文中有的词是一个字有的词是两个字,在不同卷积核的情况下对应数量字数的词会表现出更好的效果

num_filters:每个卷积核大小对应的卷积核个数,这里为了偷了一点懒,将不同大小卷积核的数量都设为一个常量

l2_reg_lambda:这个就是L2正则的权值,就不多解释了

[python]  view plain  copy
  1. # Placeholders for input, output and dropout  
  2.         self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")  
  3.         self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")  
  4.         self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")  
  5.   
  6.         # Keeping track of l2 regularization loss (optional)  
  7.         l2_loss = tf.constant(0.0)  
定义了输入与输出、dropout比例的占位符,设立了一个常量记录L2正则损失,每当出现新的变量时就会用变量的L2正则损失乘上L2正则损失权值加入到这个l2_loss里面来。

[python]  view plain  copy
  1. # Embedding layer  
  2.        with tf.device('/cpu:0'), tf.name_scope("embedding"):  
  3.            W = tf.Variable(  
  4.                tf.random_uniform([vocab_size, embedding_size], -1.01.0),  
  5.                name="W")  
  6.            self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)  
  7.            self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)  
定义了词嵌入矩阵,将输入的词id转化成词向量,这里的词嵌入矩阵是可以训练的,最后将词向量结果增加了一个维度,为了匹配CNN的输入

[python]  view plain  copy
  1. # Create a convolution + maxpool layer for each filter size  
  2.        pooled_outputs = []  
  3.        for i, filter_size in enumerate(filter_sizes):  
  4.            with tf.name_scope("conv-maxpool-%s" % filter_size):  
  5.                # Convolution Layer  
  6.                filter_shape = [filter_size, embedding_size, 1, num_filters]  
  7.                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")  
  8.                b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")  
  9.                conv = tf.nn.conv2d(  
  10.                    self.embedded_chars_expanded,  
  11.                    W,  
  12.                    strides=[1111],  
  13.                    padding="VALID",  
  14.                    name="conv")  
  15.                # Apply nonlinearity  
  16.                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")  
  17.                # Maxpooling over the outputs  
  18.                pooled = tf.nn.max_pool(  
  19.                    h,  
  20.                    ksize=[1, sequence_length - filter_size + 111],  
  21.                    strides=[1111],  
  22.                    padding='VALID',  
  23.                    name="pool")  
  24.                pooled_outputs.append(pooled)  
建立了一个pooled_outputs来保存每次卷积结果,在不同的卷积核大小进行卷积、relu激活函数和max_pool的操作后得到pooled,需要注意的是这里的几个设置,池化和卷积中的padding和strides,这里设置的池化和卷积保证了每段文本输出为num_filters*len(filters_sizes)个数字。

[python]  view plain  copy
  1. # Combine all the pooled features  
  2. num_filters_total = num_filters * len(filter_sizes)  
  3. self.h_pool = tf.concat(3, pooled_outputs)  
  4. self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])  
  5.   
  6. # Add dropout  
  7. with tf.name_scope("dropout"):  
  8.     self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)  
  9.   
  10. # Final (unnormalized) scores and predictions  
  11. with tf.name_scope("output"):  
  12.     W = tf.get_variable(  
  13.         "W",  
  14.         shape=[num_filters_total, num_classes],  
  15.         initializer=tf.contrib.layers.xavier_initializer())  
  16.     b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")  
  17.     l2_loss += tf.nn.l2_loss(W)  
  18.     l2_loss += tf.nn.l2_loss(b)  
  19.     self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")  
  20.     self.predictions = tf.argmax(self.scores, 1, name="predictions")  
  21.       
  22.     #Android Tensorflow lib cant handle 64 bit integers, adding an extra output layer  
  23.     #with int32 type  
  24.     self.predictions32 = tf.to_int32(self.predictions, name="predictions32")  
然后将pooled_outputs中的值全部取出来然后reshape成[len(input_x),num_filters*len(filters_size)],然后进行了dropout层防止过拟合,最后再添加了一层全连接层与softmax层将特征映射成不同类别上的概率

[python]  view plain  copy
  1. # CalculateMean cross-entropy loss  
  2. with tf.name_scope("loss"):  
  3.     losses = tf.nn.softmax_cross_entropy_with_logits(self.scores, self.input_y)  
  4.     self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss  
  5.   
  6. # Accuracy  
  7. with tf.name_scope("accuracy"):  
  8.     correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))  
  9.     self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")  
损失函数使用的交叉熵加上L2正则损失,准确度用的非常多就不特别说明了
以下是一个简单的 TextCNN 模型的代码示例: ```python import tensorflow as tf class TextCNN(object): def __init__(self, sequence_length, num_classes, vocab_size, embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0): self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x") self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") l2_loss = tf.constant(0.0) # Embedding layer with tf.device('/cpu:0'), tf.name_scope("embedding"): self.W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name="W") self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x) self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1) # Convolution + maxpool layer pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution layer filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") conv = tf.nn.conv2d( self.embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Apply nonlinearity h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # Combine all the pooled features num_filters_total = num_filters * len(filter_sizes) self.h_pool = tf.concat(pooled_outputs, 3) self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total]) # Add dropout with tf.name_scope("dropout"): self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob) # Final (unnormalized) scores and predictions with tf.name_scope("output"): W = tf.get_variable( "W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") l2_loss += tf.nn.l2_loss(W) l2_loss += tf.nn.l2_loss(b) self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores") self.predictions = tf.argmax(self.scores, 1, name="predictions") # Calculate mean cross-entropy loss with tf.name_scope("loss"): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y) self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss ``` 注释: - `sequence_length`:句子的最大长度。 - `num_classes`:分类的类别数。 - `vocab_size`:词汇表的大小。 - `embedding_size`:嵌入层的维度。 - `filter_sizes`:卷积核的大小列表。 - `num_filters`:每个卷积核的数量。 - `l2_reg_lambda`:L2 正则化系数。 该模型包括以下步骤: 1. 嵌入层:将输入的整数序列转换为嵌入向量。使用 `tf.nn.embedding_lookup()` 函数查找嵌入矩阵中的对应嵌入向量。 2. 卷积层:使用不同大小的卷积核对嵌入向量进行卷积操作。每个卷积核产生一个特征图,表示在句子中找到的某种模式。 3. 池化层:对于每个特征图,使用 max-pooling 操作来提取最显著的特征。 4. Dropout:在全连接层之前,使用 dropout 操作来减少过拟合。 5. 全连接层:将所有特征图连接起来,然后进行分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值