[算法导论]分治法---最大子数组

原创 2013年04月01日 13:33:16

分治策略---最大自子数组



一、分治策略的三个步骤

1、分解:将问题划分为一些子问题,子问题的形式与原问题一样,只是规模更小

2、解决:递归地求解出子问题。如果子问题的规模足够小,则停止递归,直接求解。

3、合并:将子问题的解组合成原问题的解。

二、最大子数组问题

题目描述:给定义数组A,长度为n,找出数组A中的最大子数组,例如数组A={-23,18,20,-7,12},则最大子数组为{18,20,-7,12}。

使用分治策略的求解方法:假定我们要寻找子数组A[low...high]的最大子数组,使用分治法意味着我们要将子数组划分为两个规模尽可能相等的子数组。也就是说,找到子数组的中央位置,比如mid,然后求解两个子数组A[low...mid]和A[mid + 1...high]。所以可以知道,A[low...high]的任何连续子数组A[i...j]所处的位置必然是三种情况之一:

1)完全位于子数组A[low...mid]中, 因此low<=i<=j<=mid;

2)完全位于子数组A[mid + 1...high]中,因此mid<=i<=j<=high;

3)跨越了中点,因此low<=i<=mid<j<=high;

    实际上,A[low...high]的一个最大子数组必然是以上三种情况中的所有子数组中和的最大者。所以,我们可以递归地求解A[low...mid]和A[mid + 1...high]的最大字数组,然后在三者中选取和最大者。

    我们可以很容易地在线型时间内求出跨越中点的最大子数组,因为它加入了限制---必须跨越中点,所以以下算法可返回跨越中点的最大子数组的和:

int Find_Max_Crossing_SubArray(int A[], int low, int mid, int high)
{
   int left_sum = -0xff;
   int sum = 0;
   for (int i = mid; i >= low; i --)
   {
      sum += A[i];
      if (sum >left_sum)
      {
         left_sum = sum;
      }
   }
   int right_sum = -0xff;
   sum = 0;
   for (int j = mid + 1; j <= high; j ++)
   {
      sum += A[j];
      if (sum > right_sum)
      {
         right_sum = sum;
      }
   }
   return left_sum + right_sum;
}

   有了一个线型时间的Find_Max_Crossing_SubArray()在手,我们就可以设计出求解最大子数组问题的分治算法代码了:

int Find_Maximum_SubArray(int A[], int low, int high)
{
   int left_sum, right_sum, cross_sum;
   if (high == low)
   {
      return A[low];
   }
   else
   {
      int mid = (low + high) / 2;
      left_sum = Find_Maximum_SubArray(A, low, mid);
      right_sum = Find_Maximum_SubArray(A, mid + 1, high);
      cross_sum = Find_Max_Crossing_SubArray(A, low, mid, high);
      if (left_sum >= right_sum && left_sum >= cross_sum)
      {
         return left_sum;
      }
      else if (right_sum >= left_sum && right_sum >= cross_sum)
      {
         return right_sum;
      }
      else
      {
         return cross_sum;
      }
   }
}

三、算法分析

     建立一个递归式来描述递归过程Find_Maximum_SubArray( )运行时间, 用T(n)表示Find_Maximum_SubArray( )求解n个元素的最大字数组的运行时间。因为前8行均为常量时间,所以T(1) = O(1). 第9和第10行给总的运行时间增加了2T(n/2)。第11行调用Find_Max_Crossing_SubArray( )花费O(n)的时间。因此对于递归情况,我们有:

T(n) = 2T(n/2) + O(n);

     所以我们可以得到Find_Maximum_SubArray( )的运行时间T(n)的递归式:

T(n) = O(1) n = 1

T(n) = 2T(n/2) + O(n) n > 1

    所以时间复杂度为O(nlg n);

四、完整代码

#include <iostream>

using namespace std;

int Find_Max_Crossing_SubArray(int A[], int low, int mid, int high)
{
   int left_sum = -0xff;
   int sum = 0;
   for (int i = mid; i >= low; i --)
   {
      sum += A[i];
      if (sum >left_sum)
      {
         left_sum = sum;
      }
   }
   int right_sum = -0xff;
   sum = 0;
   for (int j = mid + 1; j <= high; j ++)
   {
      sum += A[j];
      if (sum > right_sum)
      {
         right_sum = sum;
      }
   }
   return left_sum + right_sum;
}

int Find_Maximum_SubArray(int A[], int low, int high)
{
   int left_sum, right_sum, cross_sum;
   if (high == low)
   {
      return A[low];
   }
   else
   {
      int mid = (low + high) / 2;
      left_sum = Find_Maximum_SubArray(A, low, mid);
      right_sum = Find_Maximum_SubArray(A, mid + 1, high);
      cross_sum = Find_Max_Crossing_SubArray(A, low, mid, high);
      if (left_sum >= right_sum && left_sum >= cross_sum)
      {
         return left_sum;
      }
      else if (right_sum >= left_sum && right_sum >= cross_sum)
      {
         return right_sum;
      }
      else
      {
         return cross_sum;
      }
   }
}
int main()
{
    int A[100];
    int n;
    cout<<"Please input the number of numbers:";
    cin>>n;
    for (int i = 0; i < n; i ++)
    {
       cin>>A[i];
    }
    cout<<"最大子序列的和为:"<<Find_Maximum_SubArray(A, 0, n - 1)<<endl;
    return 0;
}


相关文章推荐

算法导论——分治法——最大子数组问题

好久没有写博客了。以后我会不定期地写一些算法的博客,分享一些算法的感想。以下的说法很多都是我自己的感想,肯定有很多不足的地方,希望大家指正。 今天把算法导论里面分治法这一章里面的第一个问题——最大子数...

最大子数组问题(分治法)--【算法导论】

《算法导论》中引入这个问题是通过股票的购买与出售,经过问题转换,将前一天的当天的股票差价重新表示出来,即转为了一个最大子数组的问题,具体内容我不多说,转的内容是: 13, -3, -25, 20, ...
  • xjm199
  • xjm199
  • 2014年01月07日 11:44
  • 3203

「算法导论」:分治法求最大子数组

时间复杂度:o(nlgn)

最大子数组问题:分治法

  • 2014年05月31日 22:33
  • 103KB
  • 下载

算法导论之分治策略:最大子数组问题

分治策略
  • WSYW126
  • WSYW126
  • 2016年03月05日 21:00
  • 507

算法导论_最大子数组问题(分治策略)

package com.wzs; import java.util.Arrays; /** * 算法导论--page41 * * @author Administrator * */...
  • adam_zs
  • adam_zs
  • 2013年02月28日 22:51
  • 1801

算法导论学习:分治策略之最大子数组问题

对于分治策略,是算法中很重要的一个环节,它能够将一个很大的问题分解为一个个的小问题,从而降低求解难度。今天,我就对《算法导论》中的最大字数组问题进行分析,并给出书中伪代码的C/C++语言表现形式,同时...

求最大子数组的和,算法导论之分治递归求解,暴力求解,记忆扫描方法。

求最大子数组的和,算法导论只分治递归求解,暴力求解,记忆扫描方法。

算法导论学习笔记(二)分治策略之最大子数组

算法导论学习笔记(二)分治策略之最大子数组
  • zjphqpz
  • zjphqpz
  • 2016年04月30日 22:03
  • 156

算法导论-求最大子数组-分治策略 c++版本

#include "stdafx.h" #include #include #include #include using namespace std; typedef struct Max...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[算法导论]分治法---最大子数组
举报原因:
原因补充:

(最多只允许输入30个字)