[算法导论]分治法---最大子数组

原创 2013年04月01日 13:33:16

分治策略---最大自子数组



一、分治策略的三个步骤

1、分解:将问题划分为一些子问题,子问题的形式与原问题一样,只是规模更小

2、解决:递归地求解出子问题。如果子问题的规模足够小,则停止递归,直接求解。

3、合并:将子问题的解组合成原问题的解。

二、最大子数组问题

题目描述:给定义数组A,长度为n,找出数组A中的最大子数组,例如数组A={-23,18,20,-7,12},则最大子数组为{18,20,-7,12}。

使用分治策略的求解方法:假定我们要寻找子数组A[low...high]的最大子数组,使用分治法意味着我们要将子数组划分为两个规模尽可能相等的子数组。也就是说,找到子数组的中央位置,比如mid,然后求解两个子数组A[low...mid]和A[mid + 1...high]。所以可以知道,A[low...high]的任何连续子数组A[i...j]所处的位置必然是三种情况之一:

1)完全位于子数组A[low...mid]中, 因此low<=i<=j<=mid;

2)完全位于子数组A[mid + 1...high]中,因此mid<=i<=j<=high;

3)跨越了中点,因此low<=i<=mid<j<=high;

    实际上,A[low...high]的一个最大子数组必然是以上三种情况中的所有子数组中和的最大者。所以,我们可以递归地求解A[low...mid]和A[mid + 1...high]的最大字数组,然后在三者中选取和最大者。

    我们可以很容易地在线型时间内求出跨越中点的最大子数组,因为它加入了限制---必须跨越中点,所以以下算法可返回跨越中点的最大子数组的和:

int Find_Max_Crossing_SubArray(int A[], int low, int mid, int high)
{
   int left_sum = -0xff;
   int sum = 0;
   for (int i = mid; i >= low; i --)
   {
      sum += A[i];
      if (sum >left_sum)
      {
         left_sum = sum;
      }
   }
   int right_sum = -0xff;
   sum = 0;
   for (int j = mid + 1; j <= high; j ++)
   {
      sum += A[j];
      if (sum > right_sum)
      {
         right_sum = sum;
      }
   }
   return left_sum + right_sum;
}

   有了一个线型时间的Find_Max_Crossing_SubArray()在手,我们就可以设计出求解最大子数组问题的分治算法代码了:

int Find_Maximum_SubArray(int A[], int low, int high)
{
   int left_sum, right_sum, cross_sum;
   if (high == low)
   {
      return A[low];
   }
   else
   {
      int mid = (low + high) / 2;
      left_sum = Find_Maximum_SubArray(A, low, mid);
      right_sum = Find_Maximum_SubArray(A, mid + 1, high);
      cross_sum = Find_Max_Crossing_SubArray(A, low, mid, high);
      if (left_sum >= right_sum && left_sum >= cross_sum)
      {
         return left_sum;
      }
      else if (right_sum >= left_sum && right_sum >= cross_sum)
      {
         return right_sum;
      }
      else
      {
         return cross_sum;
      }
   }
}

三、算法分析

     建立一个递归式来描述递归过程Find_Maximum_SubArray( )运行时间, 用T(n)表示Find_Maximum_SubArray( )求解n个元素的最大字数组的运行时间。因为前8行均为常量时间,所以T(1) = O(1). 第9和第10行给总的运行时间增加了2T(n/2)。第11行调用Find_Max_Crossing_SubArray( )花费O(n)的时间。因此对于递归情况,我们有:

T(n) = 2T(n/2) + O(n);

     所以我们可以得到Find_Maximum_SubArray( )的运行时间T(n)的递归式:

T(n) = O(1) n = 1

T(n) = 2T(n/2) + O(n) n > 1

    所以时间复杂度为O(nlg n);

四、完整代码

#include <iostream>

using namespace std;

int Find_Max_Crossing_SubArray(int A[], int low, int mid, int high)
{
   int left_sum = -0xff;
   int sum = 0;
   for (int i = mid; i >= low; i --)
   {
      sum += A[i];
      if (sum >left_sum)
      {
         left_sum = sum;
      }
   }
   int right_sum = -0xff;
   sum = 0;
   for (int j = mid + 1; j <= high; j ++)
   {
      sum += A[j];
      if (sum > right_sum)
      {
         right_sum = sum;
      }
   }
   return left_sum + right_sum;
}

int Find_Maximum_SubArray(int A[], int low, int high)
{
   int left_sum, right_sum, cross_sum;
   if (high == low)
   {
      return A[low];
   }
   else
   {
      int mid = (low + high) / 2;
      left_sum = Find_Maximum_SubArray(A, low, mid);
      right_sum = Find_Maximum_SubArray(A, mid + 1, high);
      cross_sum = Find_Max_Crossing_SubArray(A, low, mid, high);
      if (left_sum >= right_sum && left_sum >= cross_sum)
      {
         return left_sum;
      }
      else if (right_sum >= left_sum && right_sum >= cross_sum)
      {
         return right_sum;
      }
      else
      {
         return cross_sum;
      }
   }
}
int main()
{
    int A[100];
    int n;
    cout<<"Please input the number of numbers:";
    cin>>n;
    for (int i = 0; i < n; i ++)
    {
       cin>>A[i];
    }
    cout<<"最大子序列的和为:"<<Find_Maximum_SubArray(A, 0, n - 1)<<endl;
    return 0;
}


数据结构和算法(Java)

-
  • 1970年01月01日 08:00

算法导论——分治法——最大子数组问题

好久没有写博客了。以后我会不定期地写一些算法的博客,分享一些算法的感想。以下的说法很多都是我自己的感想,肯定有很多不足的地方,希望大家指正。 今天把算法导论里面分治法这一章里面的第一个问题——最大子数...
  • songxueyu
  • songxueyu
  • 2015-07-19 20:37:33
  • 1038

分治法——最大子数组

题目描述: 给定一个n个元素的数组a,求a[i]+a[i+1]+…+a[j]的最大值(0
  • fuyukai
  • fuyukai
  • 2015-03-10 20:38:02
  • 1133

分治策略之最大子数组问题

分治策略的说明 分治策略是将一个大问题,不断分解成多个容易解决、与大问题形式相同的小问题,然后将小问题的解组合一起来得出最终大问题的解。 在分治策略中将执行如下三个步骤: 分解:将大问题分解成多个...
  • Clown_Zeon
  • Clown_Zeon
  • 2016-06-09 19:56:36
  • 1135

分治法--最大子数组

算法导论分治算法 分治法:将数组尽可能分成规模相等的两部分,所以最大子数组无外乎三种情况 1.全在左数组a[low->mid]中 2.全在右数组a[mid+1->high]中 3.在左右中a[...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016-03-01 16:44:19
  • 677

算法导论 分治1 最大子数组和

#include #include int find_max_crossing_subarray(int arr[], int low, int mid, int high, int *left...
  • u013479704
  • u013479704
  • 2014-06-06 09:22:44
  • 534

「算法导论」:分治法求最大子数组

时间复杂度:o(nlgn)
  • u014723123
  • u014723123
  • 2014-07-07 16:54:32
  • 420

[算法导论]分治法---最大子数组

分治策略---最大自子数组 一、分治策略的三个步骤 1、分解:将问题划分为一些子问题,子问题的形式与原问题一样,只是规模更小 2、解决:递归地求解出子问题。如果子问题的规模足够小...
  • chuan6099
  • chuan6099
  • 2013-04-01 13:33:16
  • 824

算法导论:分治策略__最大子数组问题

可以参考http://segmentfault.com/blog/binta/1190000000733277 //参考书上源代码,但是对于分治法求解,返回子数组范围在一些情况下有一些问题。 // ...
  • u013907577
  • u013907577
  • 2015-02-09 18:17:36
  • 171

《算法导论》学习笔记——最大子数组(分治策略,动态规划)

一、分治策略 分治法的思想     将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后再合并这些子问题的解来建立原问题的解。 递归式     递归式与分治方法是紧密相关的,因...
  • chensilly8888
  • chensilly8888
  • 2015-01-04 10:42:51
  • 1304
收藏助手
不良信息举报
您举报文章:[算法导论]分治法---最大子数组
举报原因:
原因补充:

(最多只允许输入30个字)