题目链接: http://poj.org/problem?id=3321
题意:给一棵树,每个节点有一个编号,告诉你这棵树的构造。可以将一个节点的值改变,或者求一个节点及其所有子节点的和。
思路:如果按照题意去模拟的话,时间复杂度是不稳定的,当这棵树为链时,就会超时。
我们可以试着用树状数组来解决这个问题,我们将树的节点看做一个个直线上的点,我们要考虑查询的时候一个节点及其子节点包括哪些值,修改一个节点会造成哪些影响。
如果我们去dfs这棵树,在去dfs子节点之前是不是就是这个节点管辖的开头,也就是节点本身,当dfs完所有节点回到自己的时候是不是就是这个节点管辖的结尾。
假设有一棵树是这样的。
那么dfs的顺序是1 2 3 4 5。
先看1节点,当dfs1结束后遍历了5个结点,所以1的范围是[1,5]
看3节点,是从3开始的,然后遍历4、5后回来,所以3的范围是[3,5]
这样我们把这棵树上的节点按照dfs的顺序排成一维数组,就可以用树状数组维护
每次改变一个节点的值就在这个节点的左边界(就是节点本身)修改,查询的时候右边界范围减去左边界范围就得到这个区间的和。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
#define rep(i,j,k) for(int i = j; i <= k; i++ )
#define Rrep(i,j,k) for(int i = j; i >= k; i-- )
#define Clean(x,y) memset(x,y,sizeof(x))
const int maxn = 110009;
int n;
struct node
{
int to;
int next;
}edge[maxn];
int head[maxn];
int pos;
int L[maxn],R[maxn];
void dfs(int k)
{
L[k] = ++pos;
for(int i = head[k];i!=-1;i = edge[i].next)
dfs( edge[i].to );
R[k] = pos;
}
int sum[maxn];
bool flag[maxn];
int lowbit(int x)
{
return x&(-x);
}
int query(int x)
{
int ans = 0;
while(x)
{
ans+=sum[x];
x-=lowbit(x);
}
return ans;
}
void add(int x,int k)
{
while(x<=n)
{
sum[x]+=k;
x+=lowbit(x);
}
}
int main()
{
while(cin>>n)
{
int ta,tb;
Clean(head,-1);
Clean(sum,0);
Clean(flag,true);
pos = 0;
rep(i,1,n-1) //读入用前向星存储
{
scanf("%d%d",&ta,&tb);
edge[i].to = tb;
edge[i].next = head[ta];
head[ta] = i;
}
dfs(1);
rep(i,1,n) add(L[i],1);
//rep(i,1,n) cout<<L[i]<<" "<<R[i]<<endl;
int m,temp;
char op;
cin>>m;
while(m--)
{
getchar();
op = getchar();
scanf("%d",&temp);
if ( op == 'Q' )
printf("%d\n", query( R[temp] ) - query( L[temp] - 1 ) );
else
{
if ( flag[temp] ) add(L[temp],-1);
else add(L[temp],1);
flag[temp] = !flag[temp];
}
}
}
return 0;
}