POJ 3321 Apple Tree

题目链接: http://poj.org/problem?id=3321


题意:给一棵树,每个节点有一个编号,告诉你这棵树的构造。可以将一个节点的值改变,或者求一个节点及其所有子节点的和。


思路:如果按照题意去模拟的话,时间复杂度是不稳定的,当这棵树为链时,就会超时。
我们可以试着用树状数组来解决这个问题,我们将树的节点看做一个个直线上的点,我们要考虑查询的时候一个节点及其子节点包括哪些值,修改一个节点会造成哪些影响。
如果我们去dfs这棵树,在去dfs子节点之前是不是就是这个节点管辖的开头,也就是节点本身,当dfs完所有节点回到自己的时候是不是就是这个节点管辖的结尾。
假设有一棵树是这样的。

3321图片
那么dfs的顺序是1 2 3 4 5。

先看1节点,当dfs1结束后遍历了5个结点,所以1的范围是[1,5]
看3节点,是从3开始的,然后遍历4、5后回来,所以3的范围是[3,5]
这样我们把这棵树上的节点按照dfs的顺序排成一维数组,就可以用树状数组维护
每次改变一个节点的值就在这个节点的左边界(就是节点本身)修改,查询的时候右边界范围减去左边界范围就得到这个区间的和。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>


using namespace std;

#define rep(i,j,k) for(int i = j; i <= k; i++ )
#define Rrep(i,j,k) for(int i = j; i >= k; i-- )
#define Clean(x,y) memset(x,y,sizeof(x))
const int maxn = 110009;


int n;
struct node
{
    int to;
    int next;
}edge[maxn];
int head[maxn];

int pos;
int L[maxn],R[maxn];
void dfs(int k)
{
    L[k] = ++pos;
    for(int i = head[k];i!=-1;i = edge[i].next)
        dfs( edge[i].to );
    R[k] = pos;
}

int sum[maxn];
bool flag[maxn];

int lowbit(int x)
{
    return x&(-x);
}
int query(int x)
{
    int ans = 0;
    while(x)
    {
        ans+=sum[x];
        x-=lowbit(x);
    }
    return ans;
}
void add(int x,int k)
{
    while(x<=n)
    {
        sum[x]+=k;
        x+=lowbit(x);
    }
}

int main()
{
    while(cin>>n)
    {
        int ta,tb;
        Clean(head,-1);
        Clean(sum,0);
        Clean(flag,true);
        pos = 0;
        rep(i,1,n-1) //读入用前向星存储
        {
            scanf("%d%d",&ta,&tb);
            edge[i].to = tb;
            edge[i].next = head[ta];
            head[ta] = i;
        }
        dfs(1);
        rep(i,1,n) add(L[i],1);
        //rep(i,1,n) cout<<L[i]<<"  "<<R[i]<<endl;
        int m,temp;
        char op;
        cin>>m;
        while(m--)
        {
            getchar();
            op = getchar();
            scanf("%d",&temp);
            if ( op == 'Q' )
                printf("%d\n", query( R[temp] ) - query( L[temp] - 1 ) );
            else
            {
                if ( flag[temp] ) add(L[temp],-1);
                else add(L[temp],1);
                flag[temp] = !flag[temp];
            }
        }
    }

    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值