POJ 1739 Tony's Tour

题目链接:http://poj.org/problem?id=1739


题意:求从左下角走到右下角,每个非障碍格子只走一次的方案数。


思路:求简单路径的数量,这个简单路径起点和终点固定,其次要把所有的非障碍格子都访问到。所以分为起点、终点、障碍格子和一般格子,一般格子有两个插头,且不能形成回路,即不能合并已经连通的插头。


#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL long long
#define Clean(x,y) memset(x,y,sizeof(x))
int n,m;
int pre,cur;

char g[20][20];
const int Hash = 10007;
const int maxn = 509999;
LL ans;
int bit = 7;
int inc = 3;
int code[20];
int vis[20];

struct hash_table
{
    int head[Hash] , next[maxn];
    LL state[maxn],value[maxn];
    int size;
    void clear()
    {
        size = 0;
        Clean(head,-1);
    }
    void push( LL S , LL V )
    {
        int index = S % Hash;
        for( int k = head[index]; k != -1; k = next[k] )
            if ( state[k] == S )
            {
                value[k] += V;
                return;
            }
        state[size] = S , value[size] = V;
        next[size] = head[index] , head[index] = size++;
    }
}dp[2];

inline void decode( LL S , int m )
{
    for( int i = 0; i <= m; i++ ) code[i] = S & bit , S >>= inc;
}

inline LL encode( int m )
{
    LL ans = 0;
    int now = 1;
    Clean(vis,-1);
    vis[0] = 0;
    for( int i = m; i >= 0; i-- )
    {
        if ( -1 == vis[ code[i] ] ) vis[code[i]] = now++;
        code[i] = vis[ code[i] ];
        ans <<= inc;
        ans |= code[i];
    }
    return ans;
}

bool check( int m )
{
    for( int i = 0; i <=m; i++ ) if ( code[i] ) return false;
    return true;
}

void DP( int x , int y , int k ) //0????  1?????  2??2?  3??3?
{
    decode( dp[pre].state[k] , m );
    int left = code[y-1] , up = code[y];
    LL V = dp[pre].value[k];
    code[y] = code[y-1] = 0;

    if ( g[x][y] == '#' ) //障碍格子 不能有插头
    {
        if ( !left && !up ) dp[cur].push( encode(m) , V );
    }
    else
    {
        if( x == n && y == 1 ) //起点  有单插头 向上或向右
        {
            if ( !left )
            {
                if ( up ) dp[cur].push( encode(m) , V );
                else code[y] = bit , dp[cur].push( encode(m) , V );
            }
        }
        else if ( x == n && y == m ) //终点
        {
            if ( ( left && !up ) || ( !left && up ) ) //单插头
            {
                dp[cur].push( encode(m) , V );
            }
        }
        else
        {
            if ( !left && !up )
            {
                if ( x < n && y < m && g[x+1][y] == '.' && g[x][y+1] == '.' )
                    code[y-1] = code[y] = bit , dp[cur].push( encode(m) , V );
            }
            else if ( !left || !up )
            {
                if ( x < n && g[x+1][y] == '.' )
                    code[y-1] = left + up , dp[cur].push( encode(m) , V );
                code[y-1] = 0;
                if ( y < m && g[x][y+1] == '.' )
                    code[y] = left + up , dp[cur].push( encode(m) , V );
            }
            else if ( left != up ) //因为是简单路径 , 所以不能形成回路
            {
                for( int i = 0; i <= m; i++ )
                    if ( code[i] == left ) code[i] = up;
                dp[cur].push( encode(m) , V );
            }
        }
    }
}

LL solve()
{
    cur = 0;
    dp[0].clear();
    dp[0].push( 0 , 1 );

    for( int i = 1; i <= n; i++ )
    {
        pre = cur , cur ^= 1;
        dp[cur].clear();
        for( int k = 0; k < ( dp[pre].size ); k++ )
        dp[cur].push( dp[pre].state[k]<<inc , dp[pre].value[k] );

        for( int j = 1; j <= m; j++ )
        {
            pre = cur , cur ^= 1 , dp[cur].clear();
            for( int k = 0; k < dp[pre].size; k++ ) DP( i , j , k );
        }
    }
    for( int k = 0; k < dp[cur].size; k++ )
        if ( dp[cur].state[k] == 0 ) return dp[cur].value[k];
    return 0;
}

void init()
{
    getchar();
    for( int i = 1; i <= n; i++ )
    {
        gets( g[i] + 1 );
    }
}

int main()
{
    while( scanf("%d%d",&n,&m) == 2 )
    {
        if ( n + m == 0 ) break;
        init();
        printf("%lld\n",solve());
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值