题目链接:http://acm.hust.edu.cn/vjudge/problem/51194
题意:求长度为n的01串有多少个不含长度至少为k的回文连续子串。
思路:状态压缩dp,dp[i][s]表示前i位,且包括第i位在内的最后k位状态未s时的合法字符串数量。长的回文串是由短的回文串构成的,所以当我们只要在长度为k的时候把这个回文串给结束掉就可以了,但是回文串有奇偶长度,存在这种情况:长度为5的回文串00100,如果k = 4,那么只判断k=4的回文串是不够的,所以为了防止奇偶不同而漏掉判断每次再多判断一下如果当前状态再接上一位变为k+1位时是否为回文串即可。
先预处理出来一个数组palindromic[k][s]表示压缩后的状态为s的一个k位的字符串是否为回文串。然后枚举上一位的状态转移。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <utility>
using namespace std;
#define rep(i,j,k) for (int i=j;i<=k;i++)
#define Rrep(i,j,k) for (int i=j;i>=k;i--)
#define Clean(x,y) memset(x,y,sizeof(x))
#define LL long long
#define ULL unsigned long long
#define inf 0x7fffffff
#define mod 1000000007
const int maxn = (1<<11) + 10;
int n,k;
bool palindromic[12][maxn];
LL dp[405][maxn];
int bit[12];
void init()
{
bit[1] = 1;
rep(i,2,11) bit[i] = bit[i-1]<<1;
Clean(palindromic,false);
palindromic[1][0] = true;
palindromic[1][1] = true;
rep(i,2,11)
{
int half = i / 2;
int uplim = ( 1 << half ) - 1;
rep(L,0,uplim)
{
int temp = L;
int R = 0;
rep(j,1,half) R = (R<<1) + ( temp & 1 ) , temp >>= 1;
if ( i & 1 )
{
palindromic[i][ (L<<1)<<half|R ] = true;
palindromic[i][ (L<<1|1)<<half|R ] = true;
}
else
palindromic[i][L<<half|R] = true;
}
}
}
int cal( int state , int last )
{
if ( state >= bit[k] ) state -= bit[k];
return state<<1|last;
}
void solve()
{
LL ans = 0;
int uplim = (1<<k) - 1;
Clean(dp,0);
dp[0][0] = 1;
rep(i,1,n)
{
rep(j,0,uplim)
{
if ( dp[i-1][j] == 0 ) continue;
rep(x,0,1)
{
int newstate = cal( j , x );
if ( i >= k && palindromic[k][newstate] ) continue;
if ( i >= k + 1 && palindromic[k+1][j<<1|x] ) continue;
dp[i][newstate] += dp[i-1][j];
dp[i][newstate] %= mod;
}
}
}
rep(i,0,uplim) ans = ( ans + dp[n][i] ) % mod;
cout<<ans<<endl;
}
int main()
{
init();
int T;
cin>>T;
while(T--)
{
cin>>n>>k;
solve();
}
return 0;
}