题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3377
题意:左上角出发走到右下角结束,每个格子有个分数。每个格子最多经过一次,可以不经过,求最大得分。
思路:这题要求一个简单路径,也就是说只有起点和终点是单插头,其余点都是双插头, 所以分类讨论一下转移即可。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL long long
#define Clean(x,y) memset(x,y,sizeof(x))
int n,m;
int pre,cur;
int g[20][20];
const int maxn = 1009999;
int bit = 7;
int inc = 3;
int code[20];
int vis[20];
struct hash_table
{
int head[10007] , next[maxn];
LL value[maxn] , state[maxn];
int size;
void clear()
{
size = 0;
Clean(head,-1);
}
void push( LL S , LL V )
{
int index = S % 10007;
for( int k = head[index]; k != -1; k = next[k] )
if ( state[k] == S )
{
value[k] = max( value[k] , V );
return;
}
state[size] = S , value[size] = V;
next[size] = head[index] , head[index] = size++;
}
}dp[2];
void init()
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&g[i][j]);
}
inline void decode( LL S , int m )
{
for( int i = 0; i <= m; i++ ) code[i] = S & bit , S >>= inc;
}
inline LL encode( int m )
{
LL ans = 0;
int now = 1;
Clean(vis,-1);
vis[0] = 0;
for( int i = m; i >= 0; i-- )
{
if ( -1 == vis[ code[i] ] ) vis[code[i]] = now++;
code[i] = vis[ code[i] ];
ans <<= inc;
ans |= code[i];
}
return ans;
}
void DP( int x , int y , int k )
{
decode( dp[pre].state[k] , m );
int left = code[y-1] , up = code[y];
code[y] = code[y-1] = 0;
LL V = dp[pre].value[k];
if ( x == n && y == m )
{
if ( ( !up && left ) || ( !left && up ) ) //单插头
{
dp[cur].push( encode( m ) , V + g[x][y] );
}
}
else if ( x == 1 && y == 1 )
{
if ( x < n ) code[y-1] = 1 , dp[cur].push( encode( m ) , V + g[1][1] ) , code[y-1] = 0;
if ( y < m ) code[y] = 1 , dp[cur].push( encode( m ) , V + g[1][1] );
}
else if ( !left && !up ) //不取该格子,无插头,则不产生插头
{
dp[cur].push( encode(m) , V );
if ( x < n && y < m )
{
code[y] = code[y-1] = bit;
dp[cur].push( encode(m) , V + g[x][y] );
}
}
else if ( !left || !up ) //取该格子,有一个插头,还需要一个插头
{
if ( x < n ) code[y-1] = left + up , dp[cur].push( encode(m) , V + g[x][y] );//下插头
code[y] = code[y-1] = 0;
if ( y < m ) code[y] = left + up , dp[cur].push( encode(m) , V + g[x][y] );//右插头
}
else if ( left != up ) //有两个插头且不成回路,即联通两个非联通路线 不能形成回路
{
for( int i = 0; i <= m; i++ )
if( code[i] == left ) code[i] = up;
dp[cur].push( encode( m ) , V + g[x][y] );
}
}
LL solve()
{
cur = 0;
dp[0].clear();
dp[0].push( 1 , 0 );
for( int i = 1; i <= n; i++ )
{
pre = cur , cur ^= 1;
dp[cur].clear();
for( int k = 0; k < ( dp[pre].size ); k++ )
dp[cur].push( dp[pre].state[k]<<inc , dp[pre].value[k] );
for( int j = 1; j <= m; j++ )
{
pre = cur , cur ^= 1;
dp[cur].clear();
for( int k = 0; k < dp[pre].size; k++ ) DP( i , j , k );
}
}
for( int k = 0; k < dp[cur].size; k++ )
if ( dp[cur].state[k] == 0 ) return dp[cur].value[k];
return 0;
}
int main()
{
int cas = 0;
while( scanf("%d%d",&n,&m) == 2 )
{
init();
printf("Case %d: %lld\n",++cas,solve());
}
return 0;
}