HDU 3377 Plan

本文详细解析了HDU 3377问题——从左上角到右下角的最大得分路径算法。通过动态规划的方法,针对不同节点状态进行分类讨论并转移,最终求得最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3377


题意:左上角出发走到右下角结束,每个格子有个分数。每个格子最多经过一次,可以不经过,求最大得分。


思路:这题要求一个简单路径,也就是说只有起点和终点是单插头,其余点都是双插头, 所以分类讨论一下转移即可。


#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL long long
#define Clean(x,y) memset(x,y,sizeof(x))
int n,m;
int pre,cur;

int g[20][20];
const int maxn = 1009999;

int bit = 7;
int inc = 3;
int code[20];
int vis[20];

struct hash_table
{
    int head[10007] , next[maxn];
    LL value[maxn] , state[maxn];
    int size;
    void clear()
    {
        size = 0;
        Clean(head,-1);
    }
    void push( LL S , LL V )
    {
        int index = S % 10007;
        for( int k = head[index]; k != -1; k = next[k] )
            if ( state[k] == S )
            {
                value[k] = max( value[k] , V );
                return;
            }
        state[size] = S , value[size] = V;
        next[size] = head[index] , head[index] = size++;
    }
}dp[2];

void init()
{
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
        scanf("%d",&g[i][j]);
}

inline void decode( LL S , int m )
{
    for( int i = 0; i <= m; i++ ) code[i] = S & bit , S >>= inc;
}

inline LL encode( int m )
{
    LL ans = 0;
    int now = 1;
    Clean(vis,-1);
    vis[0] = 0;
    for( int i = m; i >= 0; i-- )
    {
        if ( -1 == vis[ code[i] ] ) vis[code[i]] = now++;
        code[i] = vis[ code[i] ];
        ans <<= inc;
        ans |= code[i];
    }
    return ans;
}

void DP( int x , int y , int k )
{
    decode( dp[pre].state[k] , m );
    int left = code[y-1] , up = code[y];
    code[y] = code[y-1] = 0;
    LL V = dp[pre].value[k];

    if ( x == n && y == m )
    {
        if ( ( !up && left ) || ( !left && up ) ) //单插头
        {
            dp[cur].push( encode( m ) , V + g[x][y] );
        }
    }
    else if ( x == 1 && y == 1 )
    {
        if ( x < n ) code[y-1] = 1 , dp[cur].push( encode( m ) , V + g[1][1] ) , code[y-1] = 0;
        if ( y < m ) code[y] = 1 , dp[cur].push( encode( m ) , V + g[1][1] );
    }
    else if ( !left && !up ) //不取该格子,无插头,则不产生插头
    {
        dp[cur].push( encode(m) , V );
        if ( x < n && y < m )
        {
            code[y] = code[y-1] = bit;
            dp[cur].push( encode(m) , V + g[x][y] );
        }
    }
    else if ( !left || !up ) //取该格子,有一个插头,还需要一个插头
    {
        if ( x < n ) code[y-1] = left + up , dp[cur].push( encode(m) , V + g[x][y] );//下插头
        code[y] = code[y-1] = 0;
        if ( y < m ) code[y] = left + up , dp[cur].push( encode(m) , V + g[x][y] );//右插头
    }
    else if ( left != up ) //有两个插头且不成回路,即联通两个非联通路线 不能形成回路
    {
        for( int i = 0; i <= m; i++ )
            if( code[i] == left ) code[i] = up;
        dp[cur].push( encode( m ) , V + g[x][y] );
    }
}

LL solve()
{
    cur = 0;
    dp[0].clear();
    dp[0].push( 1 , 0 );

    for( int i = 1; i <= n; i++ )
    {
        pre = cur , cur ^= 1;
        dp[cur].clear();
        for( int k = 0; k < ( dp[pre].size ); k++ )
        dp[cur].push( dp[pre].state[k]<<inc , dp[pre].value[k] );

        for( int j = 1; j <= m; j++ )
        {
            pre = cur , cur ^= 1;
            dp[cur].clear();
            for( int k = 0; k < dp[pre].size; k++ ) DP( i , j , k );
        }
    }
    for( int k = 0; k < dp[cur].size; k++ )
        if ( dp[cur].state[k] == 0 ) return dp[cur].value[k];
    return 0;
}

int main()
{
    int cas = 0;
    while( scanf("%d%d",&n,&m) == 2 )
    {
        init();
        printf("Case %d: %lld\n",++cas,solve());
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值