关闭

UVA 1543 Telescope

标签: 区间dp
70人阅读 评论(0) 收藏 举报
分类:

题目链接:http://acm.hust.edu.cn/vjudge/problem/41494


题意:一个圆上有n个点,选择其中的m个点按照顺序连成m边形,求最大的面积。


思路:dp[i][j][k],表示从i号点开始作为起点的j个点中选择k个点连成图形的最大面积,且区间内的左右边界点必须选择。

dp[i][j][k] = max( dp[i][l][k-1] + area(i,l,j) ) 枚举起点,长度,和选择点的个数k,以及第k-1个点选择的位置进行转移。

还有就是给定三个点,计算他们围成的面积,可以根据角度计算出各边长,然后用海伦公式计算面积。


#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <utility>
using namespace std;

#define rep(i,j,k) for (int i=j;i<=k;i++)
#define Rrep(i,j,k) for (int i=j;i>=k;i--)

#define Clean(x,y) memset(x,y,sizeof(x))
#define LL long long
#define ULL unsigned long long
#define inf 0x7fffffff
#define mod 100000007

const int maxn = 50;
const double pi = acos(-1.0);
double x[maxn];
double dp[maxn][maxn][maxn];
double area[maxn][maxn][maxn];

double cal( int a,int b,int c )
{
    double a1 = 2 * sin( min( fabs(x[a]-x[b]) , 1 - fabs(x[a]-x[b]) )*pi );
    double a2 = 2 * sin( min( fabs(x[a]-x[c]) , 1 - fabs(x[a]-x[c]) )*pi );
    double a3 = 2 * sin( min( fabs(x[c]-x[b]) , 1 - fabs(x[c]-x[b]) )*pi );
    double p = ( a1 + a2 + a3 ) / 2;
    return sqrt( p * (p-a1) * (p-a2) * (p-a3) );
}
int n,m;

void init()
{
    rep(i,1,n)
        rep(j,1,n)
            rep(k,1,n)
            if ( i != j && i != k && k != j )
            area[i][j][k] = area[i][k][j] = area[j][i][k] = area[j][k][i] = area[k][i][j] = area[k][j][i] = cal( i,j,k );
}

int main()
{
    while( cin>>n>>m )
    {
        if ( n + m == 0 ) break;
        rep(i,1,n) scanf("%lf",&x[i]);
        Clean(dp,0);
        init();
        rep(l,3,n) //长度
            rep(i,1,n) //起点
            {
                int uplim = min( m , l ); //此区间最多选择的点数
                rep( k , 3 , uplim )
                    Rrep(mid,l-1,2) //枚举第k-1个点的位置
                    {
                        if ( mid < k-1 ) break; //此区间长度不够k-1,放不下k-1个点
                        dp[i][l][k] = max( dp[i][l][k] , dp[i][mid][k-1] + area[i][ (i+mid-2)%n + 1 ][ (i+l-2)%n + 1 ] ) ;
                    }
            }
        double ans = 0;
        rep(i,1,n)
            rep(j,m,n)
            ans = max( ans , dp[i][j][m] );
        printf("%0.6f\n",ans);
    }
    return 0;
}





0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:30934次
    • 积分:2746
    • 等级:
    • 排名:第13128名
    • 原创:254篇
    • 转载:1篇
    • 译文:0篇
    • 评论:36条
    最新评论