BZOJ1009 [HNOI2008]GT考试(KMP算法+矩阵加速dp)

本文介绍了一种使用动态规划算法解决准考证号计数问题的方法,特别是如何处理与不吉利数字相关的计数逻辑,通过状态转移方程和矩阵加速优化,确保不重复不遗漏地计算出所有合法的准考证号组合。
字符串上的动态规划:

按顺序处理准考证号每一位,
设f[i][j]表示:准考证号前i位中 后j位与不吉利数的前j位相同时,前i位的方案数 
那么答案ans=f[n][0]+f[n][1]+…+f[n][m-1]

f[i][j]的准确含义:
1.f[i][j]表示的每种方案不仅与其后j位有关,还应保证不含不吉利数 
2.为避免重复,f[i][j]表示的每种方案都不含长度大于j且与不吉利数的前缀相同 的后缀 
 否则就会出现:从1到m标号,不吉利数为123124时,f[i][2]计数的方案包含f[i][5]计数的方案 的情况 

状态转移:
f[i][j]只能由f[i-1][k]得到,相当于填完第i-1位后,将其后缀k(长为k的后缀)后面新添一位num,之后这个i位数的 与不吉利数前缀相同的最长后缀是:后缀j
i>=1时:f[i][j]=f[i-1][0]*a[0][j]+f[i-1][1]*a[1][j]+…+f[i-1][m-1]*a[m-1][j]
        比如:还是假设不吉利数为123124,那么 f[i][3]=f[i-1][2]+f[i-1][5],因为 f[i-1][2]末尾的*****12不能是**12312,所以需要f[i-1][5]补充 
        但若不吉利数为123123,那么 f[i][3]=f[i-1][2],因为 f[i][3]末尾的*****123不能是**123123
i==0时:f[0][0]=1,f[0][其他]=0
其中,a[k][j]就表示上面提到的num能取几个值,可以用kmp算法预处理出来,它是一个矩阵 

这样就可以不重不漏地计数了 

再来个矩阵加速:f[i][j]求法是个线性齐次递推式,可以构造成矩阵 


如果有问题,欢迎和我交流。

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int next[25]={0},hash[155]={0};
char t[25]={0};
int m,mod;
struct juzhen
{
	int s[25][25];
	juzhen()
	{
		memset(s,0,sizeof(s));
	}
};
juzhen A,Z;
juzhen cheng(juzhen A,juzhen B) 
{
	juzhen res;
	int i,j,k;
	for(i=0;i<m;i++)
		for(j=0;j<m;j++)
		{
			for(k=0;k<m;k++)
				res.s[i][j]+=A.s[i][k]*B.s[k][j];
			res.s[i][j]%=mod;
		}
	return res;
}
juzhen ksm(juzhen A,int n)
{
	juzhen res;
	if(n==1) return A;
	res=ksm(A,n/2);
	res=cheng(res,res);
	if(n%2==1) res=cheng(res,A);
	return res;
}
int main()
{
	int n,i,j,sum,ans=0;
	scanf("%d%d%d\n",&n,&m,&mod);
	for(i=1;i<=m;i++)
		scanf("%c",&t[i]);
	next[1]=next[2]=1;
	for(i=2;i<m;i++)
	{
		j=next[i];
		while(j>1&&t[i]!=t[j]) j=next[j];
		if(t[j]==t[i]) next[i+1]=j+1;
		else next[i+1]=1;
	}
	Z.s[0][0]=1;//f[0][0]==1
	for(i=0;i<m;i++)//初始化a[][]数组 
	{
		j=i+1;
		sum=A.s[i][j]=1;
		hash[t[j]]=i+1;
		while(j!=1)
		{
			j=next[j];
			if(hash[t[j]]!=i+1)
			{
				A.s[i][j]=1;
				hash[t[j]]=i+1;
				sum++;//每个长度为j(非0)的后缀对应一种填法 
			}
		}
		A.s[i][0]=10-sum;//第i位总共10种填法,把用过的数字去掉 
	}
	Z=cheng(Z,ksm(A,n));
	for(i=0;i<m;i++)
		ans+=Z.s[0][i];
	printf("%d",ans%mod);
	return 0;
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值