BZOJ 1009([HNOI2008]GT考试-KMP+矩阵加速Dp)

1009: [HNOI2008]GT考试

Time Limit: 1 Sec   Memory Limit: 162 MB
Submit: 1067   Solved: 642
[ Submit][ Status][ Discuss]

Description

阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0

Input

第一行输入N,M,K.接下来一行输入M位的数。 100%数据N<=10^9,M<=20,K<=1000 40%数据N<=1000 10%数据N<=6

Output

阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT


KMP+矩阵乘法,值得一提的是矩阵Dp那段是第一次自己推的……
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define MAXM (20+10)
int n,m,F;
struct M
{
    int a[MAXM][MAXM];
    M(){memset(a,0,sizeof(a));}
    int& operator()(int i,int j){return a[i][j];}
    friend M operator*(M a,M b)
    {
        M c;
        For(k,m)
            For(i,m)
                For(j,m)
                {
                    c(i,j)=(c(i,j)+a(i,k)*b(k,j))%F;
                }
        return c;
    }
    void print()
    {
        For(i,m)
        {
            For(j,m) cout<<a[i][j]<<' ';cout<<endl;
        }
    }
}a0;
int next[MAXM]={0};
char p[MAXM];
void kmp()
{
    int j=0;
    Fork(i,2,m)
    {
        while (j&&p[j+1]!=p[i]) j=next[j];
        if (p[j+1]==p[i]) j++;
        next[i]=j;
    }
}
M c;
M pow(M a,long long b)
{
    For(i,m) c(i,i)=1;
    while (b)
    {
        if (b%2) c=c*a;
        a=a*a;
        b>>=1;
    }
    return c;
}
int a[MAXM]={0},ans[MAXM]={0};
int main()
{
    //freopen("bzoj1009.in","r",stdin);
    scanf("%d%d%d%s",&n,&m,&F,p+1);
    kmp();
    //For(i,m) cout<<next[i]<<' ';
    // a0  0..m-1
    For(j,m)  //0->m-1
    {
        //f[i][j]->f[i+1][k]
        //-> f[j]->f[k]
        //-> a0[k][j]
        Rep(num,10)
        {
            if (num==p[j]-48)  //j+1
            {
                if (j<m) a0(j+1,j)++;
            }
            else
            {
                int t=next[j-1];
                while (t&&p[t+1]-48!=num) t=next[t];
                if (p[t+1]-48==num) t++;
                a0(t+1,j)++;
            }
        }
    }
    //a0.print();cout<<endl;
    a0=pow(a0,n-1);
    //a0.print();
    a[1]=9,a[2]=1;
    long long ans=0;
    For(i,m) ans=(ans+a0(i,1)*9+a0(i,2))%F;
    cout<<ans<<endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值