普里姆(Prim)算法 Java实现

原创 2017年02月21日 09:13:41

个人认为此算法遍历顺序的决定条件:

1.确定第一个顶点

2.下一个顶点可到(小于正无穷)

3.取可到顶点中最小权值的一个


代码中的图


最小生成树:99



代码(参考其他文章):

public class MinSpanTree {
    /** 邻接矩阵*/
    int[][] matrix;
    /** 表示正无穷*/
    int MAX_WEIGHT = Integer.MAX_VALUE;
    /** 顶点个数*/
    int size;

    /**
     * 普里姆算法实现最小生成树:先初始化拿到第一个顶点相关联的权值元素放到数组中-》找到其中权值最小的顶点下标-》再根据该下标,将该下标顶点相关联的权值加入到数组中-》循环遍历处理
     */
    public void prim() {
        /**存放当前到全部顶点最小权值的数组,如果已经遍历过的顶点权值为0,无法到达的为正无穷*/
        int[] tempWeight = new int[size];
        /**当前到下一个最小权值顶点的最小权值*/
        int minWeight;
        /**当前到下一个最小权值的顶点*/
        int minId;
        /**权值总和*/
        int sum = 0;
        
        //第一个顶点时,到其他顶点的权值即为邻接矩阵的第一行
        for (int i = 0; i < size; i++) {
            tempWeight[i] = matrix[0][i];
        }

        System.out.println("从顶点v0开始查找");
        for (int i = 1; i < size; i++) {
            // 每次循环找出当前到下一个最小权值的顶点极其最小权值 
            minWeight = MAX_WEIGHT;
            minId = 0;
            for (int j = 1; j < size; j++) {
                //权值为0的顶点已经遍历过,不再计入
                if (tempWeight[j] > 0 && tempWeight[j] < minWeight) {
                    minWeight = tempWeight[j];
                    minId = j;
                }
            }
            
            // 找到目标顶点minId,他的权值为minweight。
            System.out.println("找到顶点:v" + minId + " 权值为:" + minWeight);
            sum += minWeight;
            
            
            // 算法核心所在:将目标顶点到各个顶点的权值与当前tempWeight数组中的权值做比较,如果前者比后者到某个顶点的权值更小,将前者到这个顶点的权值更新入后者。
            tempWeight[minId] = 0;
            for (int j = 1; j < size; j++) {
                if (tempWeight[j] != 0 && matrix[minId][j] < tempWeight[j]) {
                    tempWeight[j] = matrix[minId][j];
                }
            }
        }
        System.out.println("最小权值总和为:" + sum);
    }

    private void createGraph(int index) {
        size = index;
        matrix = new int[index][index];
        int[] v0 = { 0, 10, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
        int[] v1 = { 10, 0, 18, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, MAX_WEIGHT, 12 };
        int[] v2 = { MAX_WEIGHT, 18, 0, 22, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 8 };
        int[] v3 = { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, MAX_WEIGHT, 16, 21 };
        int[] v4 = { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 20, 0, 26, MAX_WEIGHT, 7, MAX_WEIGHT };
        int[] v5 = { 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 26, 0, 17, MAX_WEIGHT, MAX_WEIGHT };
        int[] v6 = { MAX_WEIGHT, 16, MAX_WEIGHT, 24, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
        int[] v7 = { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, 7, MAX_WEIGHT, 19, 0, MAX_WEIGHT };
        int[] v8 = { MAX_WEIGHT, 12, 8, 21, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 0 };
        matrix[0] = v0;
        matrix[1] = v1;
        matrix[2] = v2;
        matrix[3] = v3;
        matrix[4] = v4;
        matrix[5] = v5;
        matrix[6] = v6;
        matrix[7] = v7;
        matrix[8] = v8;
    }

    public static void main(String[] args) {
        MinSpanTree graph = new MinSpanTree();
        graph.createGraph(9);
        graph.prim();
    }

}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

java 普里姆(Prim)算法求图的最小生成树

1. 基本思想: 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合 ①若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visi...
  • yxmmao
  • yxmmao
  • 2016年06月04日 22:05
  • 234

普里姆算法(prim)的实现

从单一顶点开始,普里姆算法按照以下步骤逐步扩大树中所含顶点的数目,直到遍及连通图的所有顶点。 输入:一个加权连通图,其中顶点集合为V,边集合为E;初始化:Vnew = {x},其中x为集合V中的...

数据结构之---C语言实现最小生成树之prim(普里姆)算法

数据结构之---C语言实现最小生成树之prim(普里姆)算法

C++ 最小生成树之Prim(普里姆)算法

最小生成树之Prime(普里姆)算法 最小生成树:是在一个给定的无向图G(V,E)中求一棵树T,使得这棵树拥有图G中的所有顶点,且所有边都是来自图G中的边,并且满足整棵树的边权之和最小。 如上...

普里姆(Prim)算法

从连通网N=(U,E)中找最小生成树T=(U,TE) 。 ⑴ 若从顶点v0出发构造,U={v0},TE={}; ⑵ 先找权值最小的边(u,v),其中u∈U且v∈V-U,并且子图不构成环,则U= U...

普里姆算法(Prim)

普里姆(Prim)算法是一种构造性算法。假设G=(V,E)G=(V,E)是一个具有nn个顶点的带权连通图,T=(U,TE)T=(U,TE)是GG的最小生成树,其中UU是TT的顶点集,TETE是TT的边...
  • sanqima
  • sanqima
  • 2015年10月05日 22:26
  • 378

最小生成树之Prim(普里姆)算法

Prim算法是解决最小生成树的经典算法之一。本博客以个人的理解简略地对Prim算法进行介绍以及解剖。...

普里姆(prim)算法

Prim算法 普里姆算法(Prim算法)思想 普里姆算法基本思想是以顶点为主导地位:从起点出发,通过选择当前可用的最小权值边依次把其他顶点加入到生成树当中。 下面对算法的图例描述 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:普里姆(Prim)算法 Java实现
举报原因:
原因补充:

(最多只允许输入30个字)