AAM(Active Appreance Model)算法用于人脸识别总结

本文详细介绍了AAM(Active Appearance Model)算法在人脸识别中的应用,包括样本选取与标定、形状模型构建、纹理模型构建、组合模型以及搜索模型的建立过程,通过PCA降维减少参数冗余,提高模型的效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是我在做人脸识别项目的时候主要用到的一个算法。在这里把我对AAM用于人脸识别的流程的理解写一下,方便大家学习也希望大家发现不对的地方指正微笑。本文为原创,转载请说明出处,谢谢~

 

AAM(Active Appearance Model)主动外观模型主要分为两个阶段,模型建立阶段和模型匹配阶段。其中模型建立阶段包括了对训练样本分别建立形状模型(Shape Model)和纹理模型(Texture Model),然后将两个模型进行结合,形成AAM模型。模型匹配阶段是指在视频序列中将已建立好的AAM模型在当前帧图像中寻找最匹配的目标的过程。

 

1样本选取与标定

1.1样本采集

要建立AAM模型,就需要采集目标的样本,建立样本库。一般来说,样本越多,AAM模型的效果越好,但建立模型的时间越长;样本的差异性越大,AAM模型所能处理的人脸的范围越广,但准确性会相对下降,因而需要根据经验值选取所要采用的样本数。

1.2样本取点

在采集了样本后,我们得到的只是一系列包括了我们所需要的目标信息的图像。

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值