7个示例科普CPU Cache line

转载于http://coolshell.cn/articles/10249.html


CPU cache一直是理解计算机体系架构的重要知识点,也是并发编程设计中的技术难点,而且相关参考资料如同过江之鲫,浩瀚繁星,阅之如临深渊,味同嚼蜡,三言两语难以入门。正好网上有人推荐了微软大牛Igor Ostrovsky一篇博文《漫游处理器缓存效应》,文章不仅仅用7个最简单的源码示例就将CPU cache的原理娓娓道来,还附加图表量化分析做数学上的佐证,个人感觉这种案例教学的切入方式绝对是俺的菜,故而忍不住贸然译之,以飨列位看官。

原文地址:Gallery of Processor Cache Effects

大多数读者都知道cache是一种快速小型的内存,用以存储最近访问内存位置。这种描述合理而准确,但是更多地了解一些处理器缓存工作中的“烦人”细节对于理解程序运行性能有很大帮助。

在这篇博客中,我将运用代码示例来详解cache工作的方方面面,以及对现实世界中程序运行产生的影响。

下面的例子都是用C#写的,但语言的选择同程序运行状况以及得出的结论几乎没什么影响。

示例1:内存访问和运行

你认为相较于循环1,循环2会运行多快?

1
2
3
4
5
6
7
int [] arr = new int [64 * 1024 * 1024];
 
// Loop 1
for ( int i = 0; i < arr.Length; i++) arr[i] *= 3;
 
// Loop 2
for ( int i = 0; i < arr.Length; i += 16) arr[i] *= 3;

第一个循环将数组的每个值乘3,第二个循环将每16个值乘3,第二个循环只做了第一个约6%的工作,但在现代机器上,两者几乎运行相同时间:在我机器上分别是80毫秒和78毫秒。

两个循环花费相同时间的原因跟内存有关。循环执行时间长短由数组的内存访问次数决定的,而非整型数的乘法运算次数。经过下面对第二个示例的解释,你会发现硬件对这两个循环的主存访问次数是相同的。

示例2:缓存行的影响

让我们进一步探索这个例子。我们将尝试不同的循环步长,而不仅仅是1和16。

1
for ( int i = 0; i < arr.Length; i += K) arr[i] *= 3;

下图为该循环在不同步长(K)下的运行时间:

running times of this loop for different step values (K)

注意当步长在1到16范围内,循环运行时间几乎不变。但从16开始,每次步长加倍,运行时间减半。

背后的原因是今天的CPU不再是按字节访问内存,而是以64字节为单位的块(chunk)拿取,称为一个缓存行(cache line)。当你读一个特定的内存地址,整个缓存行将从主存换入缓存,并且访问同一个缓存行内的其它值的开销是很小的。

由于16个整型数占用64字节(一个缓存行),for循环步长在1到16之间必定接触到相同数目的缓存行:即数组中所有的缓存行。当步长为32,我们只有大约每两个缓存行接触一次,当步长为64,只有每四个接触一次。

理解缓存行对某些类型的程序优化而言可能很重要。比如,数据字节对齐可能决定一次操作接触1个还是2个缓存行。那上面的例子来说,很显然操作不对齐的数据将损失一半性能。

示例3:L1和L2缓存大小

今天的计算机具有两级或三级缓存,通常叫做L1、L2以及可能的L3(译者注:如果你不明白什么叫二级缓存,可以参考这篇精悍的博文lol)。如果你想知道不同缓存的大小,你可以使用系统内部工具CoreInfo,或者Windows API调用GetLogicalProcessorInfo。两者都将告诉你缓存行以及缓存本身的大小。

在我的机器上,CoreInfo现实我有一个32KB的L1数据缓存,一个32KB的L1指令缓存,还有一个4MB大小L2数据缓存。L1缓存是处理器独享的,L2缓存是成对处理器共享的。

Logical Processor to Cache Map:
*— Data Cache 0, Level 1, 32 KB, Assoc 8, LineSize 64
*— Instruction Cache 0, Level 1, 32 KB, Assoc 8, LineSize 64
-*– Data Cache 1, Level 1, 32 KB, Assoc 8, LineSize 64
-*– Instruction Cache 1, Level 1, 32 KB, Assoc 8, LineSize 64
**– Unified Cache 0, Level 2, 4 MB, Assoc 16, LineSize 64
–*- Data Cache 2, Level 1, 32 KB, Assoc 8, LineSize 64
–*- Instruction Cache 2, Level 1, 32 KB, Assoc 8, LineSize 64
—* Data Cache 3, Level 1, 32 KB, Assoc 8, LineSize 64
—* Instruction Cache 3, Level 1, 32 KB, Assoc 8, LineSize 64
–** Unified Cache 1, Level 2, 4 MB, Assoc 16, LineSize 64

(译者注:作者平台是四核机,所以L1编号为0~3,数据/指令各一个,L2只有数据缓存,两个处理器共享一个,编号0~1。关联性字段在后面例子说明。)

让我们通过一个实验来验证这些数字。遍历一个整型数组,每16个值自增1——一种节约地方式改变每个缓存行。当遍历到最后一个值,就重头开始。我们将使用不同的数组大小,可以看到当数组溢出一级缓存大小,程序运行的性能将急剧滑落。

1
2
3
4
5
6
7
int steps = 64 * 1024 * 1024;
// Arbitrary number of steps
int lengthMod = arr.Length - 1;
for ( int i = 0; i < steps; i++)
{
     arr[(i * 16) & lengthMod]++; // (x & lengthMod) is equal to (x % arr.Length)
}

下图是运行时间图表:
cache size

你可以看到在32KB和4MB之后性能明显滑落——正好是我机器上L1和L2缓存大小。

示例4:指令级别并发

现在让我们看一看不同的东西。下面两个循环中你以为哪个较快?

1
2
3
4
5
6
7
8
int steps = 256 * 1024 * 1024;
int [] a = new int [2];
 
// Loop 1
for ( int i=0; i<steps; i++) { a[0]++; a[0]++; }
 
// Loop 2
for ( int i=0; i<steps; i++) { a[0]++; a[1]++; }

结果是第二个循环约比第一个快一倍,至少在我测试的机器上。为什么呢?这跟两个循环体内的操作指令依赖性有关。

第一个循环体内,操作做是相互依赖的(译者注:下一次依赖于前一次):
same value dependency
但第二个例子中,依赖性就不同了:
different values dependency

现代处理器中对不同部分指令拥有一点并发性(译者注:跟流水线有关,比如Pentium处理器就有U/V两条流水线,后面说明)。这使得CPU在同一时刻访问L1两处内存位置,或者执行两次简单算术操作。在第一个循环中,处理器无法发掘这种指令级别的并发性,但第二个循环中就可以。

[原文更新]:许多人在reddit上询问有关编译器优化的问题,像{ a[0]++; a[0]++; }能否优化为{ a[0]+=2; }。实际上,C#编译器和CLR JIT没有做优化——在数组访问方面。我用release模式编译了所有测试(使用优化选项),但我查询了JIT汇编语言证实优化并未影响结果。

示例5:缓存关联性

缓存设计的一个关键决定是确保每个主存块(chunk)能够存储在任何一个缓存槽里,或者只是其中一些(译者注:此处一个槽位就是一个缓存行)。

有三种方式将缓存槽映射到主存块中:

  1. 直接映射(Direct mapped cache)
    每个内存块只能映射到一个特定的缓存槽。一个简单的方案是通过块索引chunk_index映射到对应的槽位(chunk_index % cache_slots)。被映射到同一内存槽上的两个内存块是不能同时换入缓存的。(译者注:chunk_index可以通过物理地址/缓存行字节计算得到)
  2. N路组关联(N-way set associative cache)
    每个内存块能够被映射到N路特定缓存槽中的任意一路。比如一个16路缓存,每个内存块能够被映射到16路不同的缓存槽。一般地,具有一定相同低bit位地址的内存块将共享16路缓存槽。(译者注:相同低位地址表明相距一定单元大小的连续内存)
  3. 完全关联(Fully associative cache)
    每个内存块能够被映射到任意一个缓存槽。操作效果上相当于一个散列表。

直接映射缓存会引发冲突——当多个值竞争同一个缓存槽,它们将相互驱逐对方,导致命中率暴跌。另一方面,完全关联缓存过于复杂,并且硬件实现上昂贵。N路组关联是处理器缓存的典型方案,它在电路实现简化和高命中率之间取得了良好的折中。

完全关联与多路关联的cache映射
(此图由译者给出,直接映射和完全关联可以看做N路组关联的两个极端,从图中可知当N=1时,即直接映射;当N取最大值时,即完全关联。读者可以自行想象直接映射图例,具体表述见参考资料。)

举个例子,4MB大小的L2缓存在我机器上是16路关联。所有64字节内存块将分割为不同组,映射到同一组的内存块将竞争L2缓存里的16路槽位。

L2缓存有65,536个缓存行(译者注:4MB/64),每个组需要16路缓存行,我们将获得4096个集。这样一来,块属于哪个组取决于块索引的低12位bit(2^12=4096)。因此缓存行对应的物理地址凡是以262,144字节(4096*64)的倍数区分的,将竞争同一个缓存槽。我机器上最多维持16个这样的缓存槽。(译者注:请结合上图中的2路关联延伸理解,一个块索引对应64字节,chunk0对应组0中的任意一路槽位,chunk1对应组1中的任意一路槽位,以此类推chunk4095对应组4095中的任意一路槽位,chunk0和chunk4096地址的低12bit是相同的,所以chunk4096、chunk8192将同chunk0竞争组0中的槽位,它们之间的地址相差262,144字节的倍数,而最多可以进行16次竞争,否则就要驱逐一个chunk)。

为了使得缓存关联效果更加明了,我需要重复地访问同一组中的16个以上的元素,通过如下方法证明:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public static long UpdateEveryKthByte(byte[] arr, int K)
{
     Stopwatch sw = Stopwatch.StartNew();
     const int rep = 1024*1024; // Number of iterations – arbitrary
     int p = 0;
     for ( int i = 0; i < rep; i++)
     {
         arr[p]++;
         p += K;
         if (p >= arr.Length) p = 0;
     }
     sw.Stop();
     return sw.ElapsedMilliseconds;
}

该方法每次在数组中迭代K个值,当到达末尾时从头开始。循环在运行足够长(2^20次)之后停止。

我使用不同的数组大小(每次增加1MB)和不同的步长传入UpdateEveryKthByte()。以下是绘制的图表,蓝色代表运行较长时间,白色代表较短时间:
timing
蓝色区域(较长时间)表明当我们重复数组迭代时,更新的值无法同时放在缓存中。浅蓝色区域对应80毫秒,白色区域对应10毫秒。

让我们来解释一下图表中蓝色部分:

1.为何有垂直线?垂直线表明步长值过多接触到同一组中内存位置(大于16次)。在这些次数里,我的机器无法同时将接触过的值放到16路关联缓存中。

一些糟糕的步长值为2的幂:256和512。举个例子,考虑512步长遍历8MB数组,存在32个元素以相距262,144字节空间分布,所有32个元素都会在循环遍历中更新到,因为512能够整除262,144(译者注:此处一个步长代表一个字节)。

由于32大于16,这32个元素将一直竞争缓存里的16路槽位。

(译者注:为何512步长的垂直线比256步长颜色更深?在同样足够多的步数下,512比256访问到存在竞争的块索引次数多一倍。比如跨越262,144字节边界512需要512步,而256需要1024步。那么当步数为2^20时,512访问了2048次存在竞争的块而256只有1024次。最差情况下步长为262,144的倍数,因为每次循环都会引发一个缓存行驱逐。)

有些不是2的幂的步长运行时间长仅仅是运气不好,最终访问到的是同一组中不成比例的许多元素,这些步长值同样显示为蓝线。

2.为何垂直线在4MB数组长度的地方停止?因为对于小于等于4MB的数组,16路关联缓存相当于完全关联缓存。

一个16路关联缓存最多能够维护16个以262,144字节分隔的缓存行,4MB内组17或更多的缓存行都没有对齐在262,144字节边界上,因为16*262,144=4,194,304。

3.为何左上角出现蓝色三角?在三角区域内,我们无法在缓存中同时存放所有必要的数据,不是出于关联性,而仅仅是因为L2缓存大小所限。

举个例子,考虑步长128遍历16MB数组,数组中每128字节更新一次,这意味着我们一次接触两个64字节内存块。为了存储16MB数组中每两个缓存行,我们需要8MB大小缓存。但我的机器中只有4MB缓存(译者注:这意味着必然存在冲突从而延时)。

即使我机器中4MB缓存是全关联,仍无法同时存放8MB数据。

4.为何三角最左边部分是褪色的?注意左边0~64字节部分——正好一个缓存行!就像上面示例1和2所说,额外访问相同缓存行的数据几乎没有开销。比如说,步长为16字节,它需要4步到达下一个缓存行,也就是说4次内存访问只有1次开销。

在相同循环次数下的所有测试用例中,采取省力步长的运行时间来得短。

将图表延伸后的模型:
timing2

缓存关联性理解起来有趣而且确能被证实,但对于本文探讨的其它问题比起来,它肯定不会是你编程时所首先需要考虑的问题。

示例6:缓存行的伪共享(false-sharing)

在多核机器上,缓存遇到了另一个问题——一致性。不同的处理器拥有完全或部分分离的缓存。在我的机器上,L1缓存是分离的(这很普遍),而我有两对处理器,每一对共享一个L2缓存。这随着具体情况而不同,如果一个现代多核机器上拥有多级缓存,那么快速小型的缓存将被处理器独占。

当一个处理器改变了属于它自己缓存中的一个值,其它处理器就再也无法使用它自己原来的值,因为其对应的内存位置将被刷新(invalidate)到所有缓存。而且由于缓存操作是以缓存行而不是字节为粒度,所有缓存中整个缓存行将被刷新!

为证明这个问题,考虑如下例子:

1
2
3
4
5
6
7
8
private static int [] s_counter = new int [1024];
private void UpdateCounter( int position)
{
     for ( int j = 0; j < 100000000; j++)
     {
         s_counter[position] = s_counter[position] + 3;
     }
}

在我的四核机上,如果我通过四个线程传入参数0,1,2,3并调用UpdateCounter,所有线程将花费4.3秒。

另一方面,如果我传入16,32,48,64,整个操作进花费0.28秒!

为何会这样?第一个例子中的四个值很可能在同一个缓存行里,每次一个处理器增加计数,这四个计数所在的缓存行将被刷新,而其它处理器在下一次访问它们各自的计数(译者注:注意数组是private属性,每个线程独占)将失去命中(miss)一个缓存。这种多线程行为有效地禁止了缓存功能,削弱了程序性能。

示例7:硬件复杂性

即使你懂得了缓存的工作基础,有时候硬件行为仍会使你惊讶。不用处理器在工作时有不同的优化、探试和微妙的细节。

有些处理器上,L1缓存能够并发处理两路访问,如果访问是来自不同的存储体,而对同一存储体的访问只能串行处理。而且处理器聪明的优化策略也会使你感到惊讶,比如在伪共享的例子中,以前在一些没有微调的机器上运行表现并不良好,但我家里的机器能够对最简单的例子进行优化来减少缓存刷新。

下面是一个“硬件怪事”的奇怪例子:

1
2
3
4
5
6
7
8
private static int A, B, C, D, E, F, G;
private static void Weirdness()
{
     for ( int i = 0; i < 200000000; i++)
     {
         // do something...
     }
}

当我在循环体内进行三种不同操作,我得到如下运行时间:

           操作                    时间
A++; B++; C++; D++;     719 ms
A++; C++; E++; G++;     448 ms
A++; C++;                      518 ms

增加A,B,C,D字段比增加A,C,E,G字段花费更长时间,更奇怪的是,增加A,C两个字段比增加A,C,E,G执行更久!

我无法肯定这些数字背后的原因,但我怀疑这跟存储体有关,如果有人能够解释这些数字,我将洗耳恭听。

这个例子的教训是,你很难完全预测硬件的行为。你可以预测很多事情,但最终,衡量及验证你的假设非常重要。

关于第7个例子的一个回帖

Goz:我询问Intel的工程师最后的例子,得到以下答复:

“很显然这涉及到执行单元里指令是怎样终止的,机器处理存储-命中-加载的速度,以及如何快速且优雅地处理试探性执行的循环展开(比如是否由于内部冲突而多次循环)。但这意味着你需要非常细致的流水线跟踪器和模拟器才能弄明白。在纸上预测流水线里的乱序指令是无比困难的工作,就算是设计芯片的人也一样。对于门外汉来说,没门,抱歉!”

P.S.个人感悟——局部性原理和流水线并发

程序的运行存在时间和空间上的局部性,前者是指只要内存中的值被换入缓存,今后一段时间内会被多次引用,后者是指该内存附近的值也被换入缓存。如果在编程中特别注意运用局部性原理,就会获得性能上的回报。

比如C语言中应该尽量减少静态变量的引用,这是因为静态变量存储在全局数据段,在一个被反复调用的函数体内,引用该变量需要对缓存多次换入换出,而如果是分配在堆栈上的局部变量,函数每次调用CPU只要从缓存中就能找到它了,因为堆栈的重复利用率高。

再比如循环体内的代码要尽量精简,因为代码是放在指令缓存里的,而指令缓存都是一级缓存,只有几K字节大小,如果对某段代码需要多次读取,而这段代码又跨越一个L1缓存大小,那么缓存优势将荡然无存。

关于CPU的流水线(pipeline)并发性简单说说,Intel Pentium处理器有两条流水线U和V,每条流水线可各自独立地读写缓存,所以可以在一个时钟周期内同时执行两条指令。但这两条流水线不是对等的,U流水线可以处理所有指令集,V流水线只能处理简单指令。

CPU指令通常被分为四类,第一类是常用的简单指令,像mov, nop, push, pop, add, sub, and, or, xor, inc, dec, cmp, lea,可以在任意一条流水线执行,只要相互之间不存在依赖性,完全可以做到指令并发。

第二类指令需要同别的流水线配合,像一些进位和移位操作,这类指令如果在U流水线中,那么别的指令可以在V流水线并发运行,如果在V流水线中,那么U流水线是暂停的。

第三类指令是一些跳转指令,如cmp,call以及条件分支,它们同第二类相反,当工作在V流水线时才能通U流水线协作,否则只能独占CPU。

第四类指令是其它复杂的指令,一般不常用,因为它们都只能独占CPU。

如果是汇编级别编程,要达到指令级别并发,必须要注重指令之间的配对。尽量使用第一类指令,避免第四类,还要在顺序上减少上下文依赖。

参考资料

wiki上的CPU cache解析(中文版)(英文版)。

上海交通大学师生制作的一个关于cache映射功能、命中率计算的教学演示程序,模拟了不同关联模式下cache的映射和命中几率,形象直观。

网易数据库大牛@何_登成自制PPT《CPU Cache and Memory Ordering》,信息量超大!

南京大学计算机教学公开PPT,温馨提示,地址域名里面改变字段”lecture”后面的数字编号可切换课程;-)

(全文完)

《超标量处理器设计》讲述超标量(SuperScalar)处理器的设计,现代的高性能处理器都采用了超标量结构,大至服务器和高性能PC的处理器,小至平板电脑和智能手机的处理器,无一例外。《超标量处理器设计》以超标量处理器的流水线为主线展开内容介绍。《超标量处理器设计》主要内容包括超标量处理器的背景知识、流水线、顺序执行和乱序执行两种方式的特点;Cache的一般性原理、提高Cache性能的方法以及超标量处理器中的Cache,尤其是多端口的Cache;虚拟存储器的基础知识、页表、TLB和Cache加入流水线后的工作流程;分支预测的一般性原理、在超标量处理器中使用分支预测时遇到的问题和解决方法以及如何在分支预测失败时对处理器的状态进行恢复;一般的RISC指令集体系的简单介绍;指令解码的过程,尤其是超标量处理器中的指令解码;寄存器重命名的一般性原理、重命名的方式、超标量处理器中使用寄存器重命名时遇到的问题和解决方法以及如何对寄存器重命名的过程实现状态恢复;指令的分发(Dispatch)和发射(Issue)、发射过程中的流水线、选择电路和唤醒电路的实现过程;处理器中使用的基本运算单元、旁路网络、Cluster结构以及如何对Load/Store指令的执行过程进行加速;重排序缓存(ROB)、处理器状态的管理以及超标量处理器中对异常的处理过程;经典的Alpha21264处理器的介绍。在本书中使用了一些现实世界的超标量处理器作为例子,以便于读者加深对超标量处理器的理解和认识。 《超标量处理器设计》可用作高等院校电子及计算机专业研究生和高年级本科生教材,也可供自学者阅读。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值