关闭

e^(π*i) +1 = 0

标签: 最美的数学等式
89人阅读 评论(0) 收藏 举报
分类:

e^(π*i) +1 = 0

根据泰勒公式

f(x) = f(0) +  f'(0)x/1! + f''(0)x^2/2! + 。。。。。+fn(0)x^n/n!+。。

fn为f的n次导数

e^(x) = 1+x+x^2/2!+x^3/3!+...+x^n/n!

sin x = x-x^3/3!+x^5/5!-...(-1)^(k-1)*x^(2k-1)/(2k-1)!+Rn(x)(-∞<x<∞)

cos x = 1-x^2/2!+x^4/4!-...(-1)^k*x^(2k)/(2k)!+... (-∞<x<∞)
e^(x*i) =1+(x*i) + (x*i)^2/2! +(x*i)^3/3! +..+(x*i)^n/n!+..
= 1 + xi - x^2/2! +i*x^3/3! -x^4/4! +i*x^5/5!-...
=(1 - x^2/2! + x^4/4! - x^6/6! + ……) + i (x - x^3/3! + x^5/5! - x^7/7! + ……)
=cosx+isinx
e^(π*i) =cosπ +isinπ =-1 
==>e^(π*i) +1 = 0







0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:366次
    • 积分:60
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档