欧拉公式推导(e^iπ+1=0)

欧拉公式

e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0

复数的概念

首先我们要知道 i i i的定义: i = − 1 i=\sqrt{-1} i=1

复数可以写成 a + b i ( a , b ∈ R ) a+bi(a,b\in R) a+bi(a,bR)的形式。

( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a+bi)+(c+di)=(a+c)+(b+d)i (a+bi)+(c+di)=(a+c)+(b+d)i
( a + b i ) − ( c + d i ) = ( a + c ) − ( b + d ) i (a+bi)-(c+di)=(a+c)-(b+d)i (a+bi)(c+di)=(a+c)(b+d)i
( a + b i ) × ( c + d i ) = ( a c − b d ) + ( a d + b c ) i (a+bi)\times(c+di)=(ac-bd)+(ad+bc)i (a+bi)×(c+di)=(acbd)+(ad+bc)i
( a + b i ) / ( c + d i ) = ( a c + b d ) + ( b c − a d ) i c 2 + d 2 (a+bi)/(c+di)=\dfrac{(ac+bd)+(bc-ad)i}{c^2+d^2} (a+bi)/(c+di)=c2+d2(ac+bd)+(bcad)i


泰勒展开

前置知识:泰勒展开

e x e^x ex泰勒展开可得
e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + 1 4 ! x 4 + ⋯ e^x=1+x+\dfrac{1}{2!}x^2+\dfrac{1}{3!}x^3+\dfrac{1}{4!}x^4+\cdots ex=1+x+2!1x2+3!1x3+4!1x4+

x = i θ x=i\theta x=iθ可得
e i θ = 1 + i θ + 1 2 ! ( i θ ) 2 + 1 3 ! ( i θ ) 3 + 1 4 ! ( i θ ) 4 + ⋯ = 1 + i θ − 1 2 ! θ 2 − 1 3 ! i θ 3 + 1 4 ! θ 4 + ⋯ e^{i\theta}=1+i\theta+\dfrac{1}{2!}(i\theta)^2+\dfrac{1}{3!}(i\theta)^3+\dfrac{1}{4!}(i\theta)^4+\cdots\\ \qquad\\=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots\qquad eiθ=1+iθ+2!1(iθ)2+3!1(iθ)3+4!1(iθ)4+=1+iθ2!1θ23!1iθ3+4!1θ4+

cos ⁡ x \cos x cosx sin ⁡ x \sin x sinx分别泰勒展开可得

cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ \cos x=1-\dfrac{1}{2!}x^2+\dfrac{1}{4!}x^4+\cdots cosx=12!1x2+4!1x4+

sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 ⋯ \sin x=x-\dfrac{1}{3!}x^3+\dfrac{1}{5!}x^5\cdots sinx=x3!1x3+5!1x5

于是
cos ⁡ θ + i sin ⁡ θ = 1 + i θ − 1 2 ! θ 2 − 1 3 ! i θ 3 + 1 4 ! θ 4 + ⋯ \cos \theta+i\sin \theta=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots cosθ+isinθ=1+iθ2!1θ23!1iθ3+4!1θ4+

e i θ e^{i\theta} eiθ cos ⁡ θ + i sin ⁡ θ \cos \theta+i\sin \theta cosθ+isinθ的两个式子放在一起:

e i θ = 1 + i θ − 1 2 ! θ 2 − 1 3 ! i θ 3 + 1 4 ! θ 4 + ⋯ \qquad \qquad e^{i\theta}=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots\qquad eiθ=1+iθ2!1θ23!1iθ3+4!1θ4+

cos ⁡ θ + i sin ⁡ θ = 1 + i θ − 1 2 ! θ 2 − 1 3 ! i θ 3 + 1 4 ! θ 4 + ⋯ \cos \theta+i\sin \theta=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots cosθ+isinθ=1+iθ2!1θ23!1iθ3+4!1θ4+

我们可以得到 e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos \theta+i\sin \theta eiθ=cosθ+isinθ

θ = π \theta=\pi θ=π代入即可得到 e i π = − 1 + i × 0 = − 1 e^{i\pi}=-1+i\times0=-1 eiπ=1+i×0=1,即可得到 e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值