欧拉公式
e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0
复数的概念
首先我们要知道 i i i的定义: i = − 1 i=\sqrt{-1} i=−1
复数可以写成 a + b i ( a , b ∈ R ) a+bi(a,b\in R) a+bi(a,b∈R)的形式。
(
a
+
b
i
)
+
(
c
+
d
i
)
=
(
a
+
c
)
+
(
b
+
d
)
i
(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)+(c+di)=(a+c)+(b+d)i
(
a
+
b
i
)
−
(
c
+
d
i
)
=
(
a
+
c
)
−
(
b
+
d
)
i
(a+bi)-(c+di)=(a+c)-(b+d)i
(a+bi)−(c+di)=(a+c)−(b+d)i
(
a
+
b
i
)
×
(
c
+
d
i
)
=
(
a
c
−
b
d
)
+
(
a
d
+
b
c
)
i
(a+bi)\times(c+di)=(ac-bd)+(ad+bc)i
(a+bi)×(c+di)=(ac−bd)+(ad+bc)i
(
a
+
b
i
)
/
(
c
+
d
i
)
=
(
a
c
+
b
d
)
+
(
b
c
−
a
d
)
i
c
2
+
d
2
(a+bi)/(c+di)=\dfrac{(ac+bd)+(bc-ad)i}{c^2+d^2}
(a+bi)/(c+di)=c2+d2(ac+bd)+(bc−ad)i
泰勒展开
前置知识:泰勒展开
对
e
x
e^x
ex泰勒展开可得
e
x
=
1
+
x
+
1
2
!
x
2
+
1
3
!
x
3
+
1
4
!
x
4
+
⋯
e^x=1+x+\dfrac{1}{2!}x^2+\dfrac{1}{3!}x^3+\dfrac{1}{4!}x^4+\cdots
ex=1+x+2!1x2+3!1x3+4!1x4+⋯
令
x
=
i
θ
x=i\theta
x=iθ可得
e
i
θ
=
1
+
i
θ
+
1
2
!
(
i
θ
)
2
+
1
3
!
(
i
θ
)
3
+
1
4
!
(
i
θ
)
4
+
⋯
=
1
+
i
θ
−
1
2
!
θ
2
−
1
3
!
i
θ
3
+
1
4
!
θ
4
+
⋯
e^{i\theta}=1+i\theta+\dfrac{1}{2!}(i\theta)^2+\dfrac{1}{3!}(i\theta)^3+\dfrac{1}{4!}(i\theta)^4+\cdots\\ \qquad\\=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots\qquad
eiθ=1+iθ+2!1(iθ)2+3!1(iθ)3+4!1(iθ)4+⋯=1+iθ−2!1θ2−3!1iθ3+4!1θ4+⋯
对 cos x \cos x cosx和 sin x \sin x sinx分别泰勒展开可得
cos x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ \cos x=1-\dfrac{1}{2!}x^2+\dfrac{1}{4!}x^4+\cdots cosx=1−2!1x2+4!1x4+⋯
sin x = x − 1 3 ! x 3 + 1 5 ! x 5 ⋯ \sin x=x-\dfrac{1}{3!}x^3+\dfrac{1}{5!}x^5\cdots sinx=x−3!1x3+5!1x5⋯
于是
cos
θ
+
i
sin
θ
=
1
+
i
θ
−
1
2
!
θ
2
−
1
3
!
i
θ
3
+
1
4
!
θ
4
+
⋯
\cos \theta+i\sin \theta=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots
cosθ+isinθ=1+iθ−2!1θ2−3!1iθ3+4!1θ4+⋯
把 e i θ e^{i\theta} eiθ和 cos θ + i sin θ \cos \theta+i\sin \theta cosθ+isinθ的两个式子放在一起:
e i θ = 1 + i θ − 1 2 ! θ 2 − 1 3 ! i θ 3 + 1 4 ! θ 4 + ⋯ \qquad \qquad e^{i\theta}=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots\qquad eiθ=1+iθ−2!1θ2−3!1iθ3+4!1θ4+⋯
cos θ + i sin θ = 1 + i θ − 1 2 ! θ 2 − 1 3 ! i θ 3 + 1 4 ! θ 4 + ⋯ \cos \theta+i\sin \theta=1+i\theta-\dfrac{1}{2!}\theta^2-\dfrac{1}{3!}i\theta^3+\dfrac{1}{4!}\theta^4+\cdots cosθ+isinθ=1+iθ−2!1θ2−3!1iθ3+4!1θ4+⋯
我们可以得到 e i θ = cos θ + i sin θ e^{i\theta}=\cos \theta+i\sin \theta eiθ=cosθ+isinθ
将 θ = π \theta=\pi θ=π代入即可得到 e i π = − 1 + i × 0 = − 1 e^{i\pi}=-1+i\times0=-1 eiπ=−1+i×0=−1,即可得到 e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0。