【CQOI2016】【BZOJ4519】不同的最小割

原创 2016年04月29日 16:13:56

Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成
两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将
所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在
关于s,t的割中容量最小的割。
而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把
视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)
2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。
Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000
Output

输出文件第一行为一个整数,表示个数。

Sample Input

4 4

1 2 3

1 3 6

2 4 5

3 4 4
Sample Output

3

HINT

Source

模板默写大会

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<tr1/unordered_map>
#define MAXN 1000
#define LL long long
#define GET (ch>='0'&&ch<='9')
#define MAXLL 1ll<<60
using namespace std;
using namespace std::tr1;
template <class classname>
inline void in(classname &x)
{
    char ch=getchar();x=0;
    while (!GET)    ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();
}
unordered_map<int,int> Hash;
int n,m,S,T,top,ans;
bool vis[MAXN];
int dis[MAXN],cnt[MAXN],tmp[MAXN];
int C[MAXN][MAXN],num[MAXN],mncut[MAXN][MAXN];
struct edge {   int st,to,c;    edge *next,*rev;    }e[MAXN*10<<1],*prev[MAXN];
inline void insert(int u,int v,int c)   {   e[++top].to=v;e[top].st=u;e[top].c=c;e[top].next=prev[u];prev[u]=&e[top];   }
inline void add(int u,int v,int c)  {   insert(u,v,c);insert(v,u,c);prev[u]->rev=prev[v];prev[v]->rev=prev[u];  }
int ISAP()
{
    edge *E[MAXN],*rep[MAXN];int ret=0;int now=S;
    for (int i=1;i<=n;++i)  E[i]=prev[i];
    memset(dis,0,sizeof(dis));memset(cnt,0,sizeof(cnt));cnt[0]=n;
    while (dis[S]<=n)
    {
        edge *i;bool flag=0;
        for (i=E[now];i;i=i->next)  if (i->c>0&&dis[i->to]+1==dis[now]) {   flag=1;E[now]=i;break;  }
        if (flag)
        {
            rep[now=i->to]=i;
            if (now==T)
            {
                int minn=0x3f3f3f3f;
                for (int i=T;i!=S;i=rep[i]->st) minn=min(minn,rep[i]->c);
                for (int i=T;i!=S;i=rep[i]->st) rep[i]->c-=minn,rep[i]->rev->c+=minn;
                ret+=minn;now=S;
            }
            continue;
        }
        if (!(--cnt[dis[now]])) break;
        int mind=n+1;E[now]=prev[now];
        for (edge *i=prev[now];i;i=i->next) if (i->c>0) mind=min(mind,dis[i->to]);
        dis[now]=mind+1;++cnt[dis[now]];
        if (now!=S) now=rep[now]->st;
    }
    return ret;
}
void dfs(int x)
{
    vis[x]=1;
    for (edge *i=prev[x];i;i=i->next)   if (i->c>0&&!vis[i->to])    dfs(i->to);
}
void solve(int l,int r)
{
    if (l==r)   return;
    for (int i=1;i<=top;i+=2)   e[i].c=e[i].rev->c=((e[i].c+e[i].rev->c)>>1);
    S=num[l];T=num[r];int t=ISAP();memset(vis,0,sizeof(vis));dfs(S);
    for (int i=1;i<=n;i++)
    if (vis[i])
        for (int j=1;j<=n;j++)
        if (!vis[j])    mncut[i][j]=min(mncut[i][j],t),mncut[j][i]=min(mncut[j][i],t);
    int tp=0,len,L=l-1;
    for (int i=l;i<=r;i++)  if (vis[num[i]])    tmp[++tp]=num[i];len=tp;
    for (int i=l;i<=r;i++)  if (!vis[num[i]])   tmp[++tp]=num[i];
    for (int i=1;i<=tp;i++) num[++L]=tmp[i];
    solve(l,l+len-1);solve(l+len,r);
}
int main()
{
    in(n);in(m);int u,v,w;memset(mncut,0x3f,sizeof(mncut));
    for (int i=1;i<=n;i++)  num[i]=i;
    for (int i=1;i<=m;i++)  in(u),in(v),in(w),C[u][v]+=w,C[v][u]+=w;
    for (int i=1;i<=n;i++)  for (int j=i+1;j<=n;j++)    if (C[i][j])    add(i,j,C[i][j]);
    solve(1,n);
    for (int i=1;i<=n;i++)  for (int j=i+1;j<=n;j++)    if (Hash.find(mncut[i][j])==Hash.end()) {   Hash[mncut[i][j]]=1;ans++;  }
    printf("%d\n",ans);
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

bzoj4519[Cqoi2016]不同的最小割

bzoj4519[Cqoi2016]不同的最小割 题目在这里呀 这是我第一次遇到最小割树,特地写一个题解来记忆一下啊。(话说12月份好像好久没更博了ww) 最小割树=分治+最小割 此题的要求嘛就是求...
  • Leo_Nasir
  • Leo_Nasir
  • 2017年12月16日 21:58
  • 40

bzoj4519【CQOI2016】不同的最小割

分治+最小割树
  • AaronGZK
  • AaronGZK
  • 2016年05月11日 00:32
  • 2483

bzoj4519 [Cqoi2016]不同的最小割 分治最小割 模板

题目大意: 给一张图,求任意两点最小割有多少不同的值。题目分析: 分治最小割的模板题。 分治最小割可以在O(n次网络流+n^2)的时间复杂度求出任意两个点之间的最小割。 我也不知道为什么但是这...
  • Todobe
  • Todobe
  • 2017年06月27日 18:00
  • 124

Bzoj4519:[Cqoi2016]不同的最小割:分治最小割

题目链接4519:[Cqoi2016]不同的最小割 好像BZ上并没有传题面…… 不啪不啪咱这里有题面QwQ 问题描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所...
  • qq_34025203
  • qq_34025203
  • 2016年04月12日 08:41
  • 674

bzoj4519 [Cqoi2016]不同的最小割(最小割树,分治)

求所有点对的最小割中,不同的最小割数值有多少个。我们建出等价流树,看这n-1个最小割有几个不同的就好啦。...
  • Icefox_zhx
  • Icefox_zhx
  • 2018年01月09日 13:13
  • 30

[CQOI2016]不同的最小割

题目【问题描述】   学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将所...
  • xiaoming_p
  • xiaoming_p
  • 2017年12月13日 20:48
  • 59

4519: [Cqoi2016]不同的最小割

4519: [Cqoi2016]不同的最小割 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 524  Solved: 325 [Submit]...
  • CRZbulabula
  • CRZbulabula
  • 2016年09月28日 13:17
  • 145

CQOI2016 不同的最小割 分治最小割(最小割树)

我们有某些结论,本质不同的最小割一共有n-1个。 在这颗最小割树上,我们有两种点集,一种是源点点集,一种是汇点点集 我们做一次dinic后被增广到的地方就属于源点点集,否则属于汇点点集。这两个点集...
  • BPM136
  • BPM136
  • 2016年04月20日 16:25
  • 1162

【分治最小割】[CQOI2016]不同的最小割

题目描述分析一下所称的两点之间的最小割是指以其中一点为源点,另一个点为汇点的最小割,因为是无向图,交换源点、汇点之后最小割的值不变暴力的做法枚举点对,求出所有点对的最小割,然后全部排序看有多少个不同的...
  • outer_form
  • outer_form
  • 2016年04月10日 20:26
  • 1156

【BZOJ2229】最小割【BZOJ4519】不同的最小割

同一个板子懒得写两篇了。。。 主要思路就是说n个点的无向图中最多有n-1个不同的最小割,更详细一点说,当我们对跑一次网络流,得到(S,T)两个点集,只需要分别在两个点集内部选点跑最大流即可。 也就...
  • qq_34637390
  • qq_34637390
  • 2016年05月02日 10:54
  • 288
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【CQOI2016】【BZOJ4519】不同的最小割
举报原因:
原因补充:

(最多只允许输入30个字)