【CQOI2016】【BZOJ4519】不同的最小割

原创 2016年04月29日 16:13:56

Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成
两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将
所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在
关于s,t的割中容量最小的割。
而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把
视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)
2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。
Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000
Output

输出文件第一行为一个整数,表示个数。

Sample Input

4 4

1 2 3

1 3 6

2 4 5

3 4 4
Sample Output

3

HINT

Source

模板默写大会

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<tr1/unordered_map>
#define MAXN 1000
#define LL long long
#define GET (ch>='0'&&ch<='9')
#define MAXLL 1ll<<60
using namespace std;
using namespace std::tr1;
template <class classname>
inline void in(classname &x)
{
    char ch=getchar();x=0;
    while (!GET)    ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();
}
unordered_map<int,int> Hash;
int n,m,S,T,top,ans;
bool vis[MAXN];
int dis[MAXN],cnt[MAXN],tmp[MAXN];
int C[MAXN][MAXN],num[MAXN],mncut[MAXN][MAXN];
struct edge {   int st,to,c;    edge *next,*rev;    }e[MAXN*10<<1],*prev[MAXN];
inline void insert(int u,int v,int c)   {   e[++top].to=v;e[top].st=u;e[top].c=c;e[top].next=prev[u];prev[u]=&e[top];   }
inline void add(int u,int v,int c)  {   insert(u,v,c);insert(v,u,c);prev[u]->rev=prev[v];prev[v]->rev=prev[u];  }
int ISAP()
{
    edge *E[MAXN],*rep[MAXN];int ret=0;int now=S;
    for (int i=1;i<=n;++i)  E[i]=prev[i];
    memset(dis,0,sizeof(dis));memset(cnt,0,sizeof(cnt));cnt[0]=n;
    while (dis[S]<=n)
    {
        edge *i;bool flag=0;
        for (i=E[now];i;i=i->next)  if (i->c>0&&dis[i->to]+1==dis[now]) {   flag=1;E[now]=i;break;  }
        if (flag)
        {
            rep[now=i->to]=i;
            if (now==T)
            {
                int minn=0x3f3f3f3f;
                for (int i=T;i!=S;i=rep[i]->st) minn=min(minn,rep[i]->c);
                for (int i=T;i!=S;i=rep[i]->st) rep[i]->c-=minn,rep[i]->rev->c+=minn;
                ret+=minn;now=S;
            }
            continue;
        }
        if (!(--cnt[dis[now]])) break;
        int mind=n+1;E[now]=prev[now];
        for (edge *i=prev[now];i;i=i->next) if (i->c>0) mind=min(mind,dis[i->to]);
        dis[now]=mind+1;++cnt[dis[now]];
        if (now!=S) now=rep[now]->st;
    }
    return ret;
}
void dfs(int x)
{
    vis[x]=1;
    for (edge *i=prev[x];i;i=i->next)   if (i->c>0&&!vis[i->to])    dfs(i->to);
}
void solve(int l,int r)
{
    if (l==r)   return;
    for (int i=1;i<=top;i+=2)   e[i].c=e[i].rev->c=((e[i].c+e[i].rev->c)>>1);
    S=num[l];T=num[r];int t=ISAP();memset(vis,0,sizeof(vis));dfs(S);
    for (int i=1;i<=n;i++)
    if (vis[i])
        for (int j=1;j<=n;j++)
        if (!vis[j])    mncut[i][j]=min(mncut[i][j],t),mncut[j][i]=min(mncut[j][i],t);
    int tp=0,len,L=l-1;
    for (int i=l;i<=r;i++)  if (vis[num[i]])    tmp[++tp]=num[i];len=tp;
    for (int i=l;i<=r;i++)  if (!vis[num[i]])   tmp[++tp]=num[i];
    for (int i=1;i<=tp;i++) num[++L]=tmp[i];
    solve(l,l+len-1);solve(l+len,r);
}
int main()
{
    in(n);in(m);int u,v,w;memset(mncut,0x3f,sizeof(mncut));
    for (int i=1;i<=n;i++)  num[i]=i;
    for (int i=1;i<=m;i++)  in(u),in(v),in(w),C[u][v]+=w,C[v][u]+=w;
    for (int i=1;i<=n;i++)  for (int j=i+1;j<=n;j++)    if (C[i][j])    add(i,j,C[i][j]);
    solve(1,n);
    for (int i=1;i<=n;i++)  for (int j=i+1;j<=n;j++)    if (Hash.find(mncut[i][j])==Hash.end()) {   Hash[mncut[i][j]]=1;ans++;  }
    printf("%d\n",ans);
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CreationAugust/article/details/51282639

不同数据库表结构的转化

通过学习PowerDesigner工具,学习概念模型,物理模型,面向对象模型,业务模型,以及不同数据库表结构的转化。
  • 2018年01月13日 15:42

bzoj 4519: [Cqoi2016]不同的最小割 分治&最小割

同zjoi的那倒最小割,跑最小割之后按S和T两个集合递归分治。 AC代码如下: #include #include #include #include #define N 1005 #define M...
  • lych_cys
  • lych_cys
  • 2016-04-22 19:55:25
  • 904

Bzoj4519:[Cqoi2016]不同的最小割:分治最小割

题目链接4519:[Cqoi2016]不同的最小割 好像BZ上并没有传题面…… 不啪不啪咱这里有题面QwQ 问题描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所...
  • qq_34025203
  • qq_34025203
  • 2016-04-12 08:41:33
  • 721

BZOJ 4519([Cqoi2016]不同的最小割-Gusfield算法)

题意:给一幅图,问2点之间最小割有几个不同取值。 1
  • nike0good
  • nike0good
  • 2017-03-01 17:28:13
  • 342

bzoj4519【CQOI2016】不同的最小割

分治+最小割树
  • AaronGZK
  • AaronGZK
  • 2016-05-11 00:32:54
  • 2609

【分治最小割】[CQOI2016]不同的最小割

题目描述分析一下所称的两点之间的最小割是指以其中一点为源点,另一个点为汇点的最小割,因为是无向图,交换源点、汇点之后最小割的值不变暴力的做法枚举点对,求出所有点对的最小割,然后全部排序看有多少个不同的...
  • outer_form
  • outer_form
  • 2016-04-10 20:26:43
  • 1306

CQOI2016 不同的最小割 分治最小割(最小割树)

我们有某些结论,本质不同的最小割一共有n-1个。 在这颗最小割树上,我们有两种点集,一种是源点点集,一种是汇点点集 我们做一次dinic后被增广到的地方就属于源点点集,否则属于汇点点集。这两个点集...
  • BPM136
  • BPM136
  • 2016-04-20 16:25:54
  • 1308

【CQOI 2016】不同的最小割

题目描述给定一个nn个点mm条边的网络流,问两两点对之间不同的最小割数目。n≤850,m≤8500n\leq 850, m\leq 8500分析最小割树。考虑任意取出两个点x,yx, y,求出任意一个...
  • Yves___
  • Yves___
  • 2016-04-24 08:45:03
  • 417

[分治最小割] BZOJ 4519 [Cqoi2016]不同的最小割

最多有N-1种zuixiaoge 分治最小割裸题 #include #include #include #include #include #define V G[p].v #define...
  • u014609452
  • u014609452
  • 2016-04-19 18:32:43
  • 364

NKOJ 3611(CQOI 2016) 不同的最小割(分治+最小割=最小割树)

P3611【CQOI2016 Day1】不同的最小割 问题描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中节点的划分将图中所有节点分成两部分,如果节点s,t不在同一个部分中,则称这...
  • Mogician_Evian
  • Mogician_Evian
  • 2017-07-28 18:09:07
  • 259
收藏助手
不良信息举报
您举报文章:【CQOI2016】【BZOJ4519】不同的最小割
举报原因:
原因补充:

(最多只允许输入30个字)