【BZOJ4519】不同的最小割(CQOI2016)-最小割树

测试地址:不同的最小割
做法:本题需要用到最小割树。
看到两两间的最小割,就想到最小割树了,于是仿照BZOJ2229那题建最小割树,最后树上有多少不同的边权就等同于有多少不同的最小割。其实连树都不用建出来,直接用一个数组存储出现的最小割,最后排一次序就行了。
(厚颜无耻的我复制粘贴了BZOJ2229的代码……如果里面有一些奇怪的东西也不要惊讶)
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf=(ll)1000000000*(ll)1000000000;
int n,m,first[1010]={0},tot=1,p[1010],S[1010],T[1010];
int h,t,q[1010],lvl[1010],cur[1010];
ll f[1010];
bool vis[1010];
struct edge
{
    int v,next;
    ll used,f;
}e[100010];

void insert(int a,int b,ll f)
{
    e[++tot].v=b,e[tot].next=first[a],e[tot].used=f,first[a]=tot;
    e[++tot].v=a,e[tot].next=first[b],e[tot].used=f,first[b]=tot;
}

bool makelevel(int S,int T)
{
    for(int i=1;i<=n;i++)
        lvl[i]=-1,cur[i]=first[i];
    lvl[S]=0;
    h=t=1;
    q[1]=S;
    while(h<=t)
    {
        int v=q[h++];
        for(int i=first[v];i;i=e[i].next)
            if (e[i].f&&lvl[e[i].v]==-1)
            {
                lvl[e[i].v]=lvl[v]+1;
                q[++t]=e[i].v;
            }
    }
    return lvl[T]!=-1;
}

ll maxflow(int v,ll maxf,int T)
{
    ll ret=0,f;
    if (v==T) return maxf;
    for(int i=cur[v];i;i=e[i].next)
    {
        if (e[i].f&&lvl[e[i].v]==lvl[v]+1)
        {
            f=maxflow(e[i].v,min(maxf-ret,e[i].f),T);
            ret+=f;
            e[i].f-=f;
            e[i^1].f+=f;
            if (ret==maxf) break;
        }
        cur[v]=i;
    }
    if (!ret) lvl[v]=-1;
    return ret;
}

ll dinic(int S,int T)
{
    ll maxf=0;
    for(int i=2;i<=(m<<1)+1;i++)
        e[i].f=e[i].used;
    while(makelevel(S,T))
        maxf+=maxflow(S,inf,T);
    return maxf;
}

void findS(int v)
{
    vis[v]=1;
    for(int i=first[v];i;i=e[i].next)
        if (e[i].f&&!vis[e[i].v]) findS(e[i].v);
}

void solve(int l,int r)
{
    if (l==r) return;
    int s=dinic(p[l],p[r]);
    f[++tot]=s;

    memset(vis,0,sizeof(vis));
    findS(p[l]);
    S[0]=T[0]=0;
    for(int i=l;i<=r;i++)
    {
        if (vis[p[i]]) S[++S[0]]=p[i];
        else T[++T[0]]=p[i];
    }
    for(int i=1;i<=S[0];i++)
        p[l+i-1]=S[i];
    for(int i=1;i<=T[0];i++)
        p[l+S[0]+i-1]=T[i];

    int sizS=S[0];
    solve(l,l+sizS-1);
    solve(l+sizS,r);
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int u,v;
        ll c;
        scanf("%d%d%lld",&u,&v,&c);
        insert(u,v,c);
    }

    tot=0;
    for(int i=1;i<=n;i++)
        p[i]=i;
    solve(1,n);
    sort(f+1,f+n);

    int ans=0;
    for(int i=1;i<n;i++)
        if (i==1||f[i]!=f[i-1]) ans++;
    printf("%d",ans);

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值