目标检测“Object Detection Using Generalization and Efficiency Balanced Co-occurrence Features”

ICCV15的文章,内容比较简单,但是boosting的方法,文章使用了Haar,HOG,LPB的共生特征,训练boosting时考虑了泛化和检测率平衡,让强特征在有高检测率的同时有好的推广性能。

特征的描述比较简单,这里使用了灰度共生矩阵的描述方法,将特征用共生的方法描述,即:
这里写图片描述

形式如下图所示:
这里写图片描述

泛化和检测平衡
好的特征对应低的分类错误率,即:
这里写图片描述

使用共生特征,离得远的图像对有可能带来噪声,使用该项评价泛化能力:
这里写图片描述

将泛化损失引入目标函数:
这里写图片描述

再考虑计算时间,这主要由负样本决定,也即是每步的虚警数决定:
这里写图片描述

最后将计算时间引入损失函数:
这里写图片描述

对最终的损失函数解释如下,在RealAdaBoost的开始阶段,虚警较多,目标易与背景分开,倾向于使用高效的特征。在接下来的阶段,虚警变困难,要使用复杂的特征,其计算时间比较长。

实验结果
在两个行人数据库上与其他方法结果对比:
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值