动态规划——最优三角形

                                     动态规划——最优三角形

最近在做dp练习的时候遇到了一题需要用最优三角形算法的题,一开始完全不知道怎么解,然后去百度了一下“最优三角形”算法,看了看,好像也不是很难。就发表一下自己的理解和看法吧:

最优三角形,也就是把一个凸n多边形用不相交的对角线割成n-2个三角形,要求所割的权值最小(也就是对角线长度和最小)。然后就开始割了,首先,选定两个不相邻的点,定为V0和Vn(我把它称为原点)吧,连接V0Vn,把原多边形分成两个多边形,然后利用递归的思想一致分割,直到凸多边形完全被分割成三角形。

最后得到递归关系式:


如果还是不懂的话点这里(大牛博客有详解)

另附上一题练习zoj3537

### 关于最优三角形内插算法及其实现 #### 最优三角形内插的概念 最优三角形内插是一种用于在不规则网格上进行数据插值的技术。该方法通过构建由已知数据点组成的三角网,再利用这些三角形单元内部的关系来进行未知位置的数据估计。 #### 实现原理 为了实现最优三角形内插,通常会采用Delaunay三角剖分作为基础结构。Delaunay三角剖分具有一个重要特性——最大化最小角,这有助于减少变形并提高插值精度[^1]。具体来说: - **创建三角网络**:基于输入的离散点集生成满足Delaunay条件的最大化角度分布的三角形集合。 - **查找目标区域**:当需要计算某个新坐标处的数值时,在上述建立起来的空间划分中定位其所属的具体三角单元。 - **线性组合权重分配**:一旦确定了待求解的位置处于哪一个特定的小区域内,则可以依据三个顶点对应的函数值得到一组加权系数;此过程往往借助面积比例或者距离倒数等方式完成。 ```python import numpy as np from scipy.spatial import Delaunay def delaunay_interpolation(points, values, query_point): """ Perform linear interpolation over a triangulation. Parameters: points (array_like): Coordinates of input data points shape=(npoints, ndims). values (array_like): Values at the given coordinates shape=(npoints,) query_point (tuple or list): The point where to interpolate value Returns: float: Interpolated value at `query_point`. """ tri = Delaunay(points) simplex_index = tri.find_simplex(query_point) vertices_indices = tri.simplices[simplex_index] barycentric_coords = _barycentric_coordinates( query_point, *tri.points[vertices_indices].T ) interpolated_value = sum(barycentric_coords[i]*values[vertex] for i, vertex in enumerate(vertices_indices)) return interpolated_value def _barycentric_coordinates(p, x0, y0, z0=None): """Compute Barycentric coordinate within triangle.""" if z0 is None: A = ((y0[1]-p[1])*(x0[2]-p[0])-(y0[2]-p[1])*(x0[1]-p[0])) / \ ((y0[1]-y0[0])*(x0[2]-x0[0])-(y0[2]-y0[0])*(x0[1]-x0[0])) B = ((z0[2]-z0[0])*(p[0]-x0[0])-(z0[1]-z0[0]) * (p[1]-y0[0]))/((z0[2]-z0[0])*(x0[1]-x0[0]) - (z0[1]-z0[0])*(y0[1]-y0[0])) C = 1-A-B return [A, B, C] ``` #### 应用场景 这种方法广泛应用于地理信息系统(GIS),计算机图形学等领域中的表面建模与分析任务当中。它能够有效地处理地形起伏变化复杂的情况下的高程预测等问题,并且支持多种边界条件下稳定可靠的运算结果输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值