原题
Given a linked list, determine if it has a cycle in it.
题目分析
判断单链表中是否有环路。
关于单链表中是否有环的概念,请大家自行查询。我由于未找到权威定义,暂时不放到这里。
代码实现
public bool HasCycle(ListNode head)
{
if (head == null) return false;
if (head.next == null) return false;
if (head.next.next == null) return false;
ListNode slow = head;
ListNode fast = head;
while (fast != null && fast.next != null)
{
slow = slow.next;
fast = fast.next.next;
if (fast == null)
return false; //快指针如果为null,不存在环
if (fast.val == slow.val)
{
return true; //找到节点数据域相等点,存在环
}
}
return false;
}
附引用参考网址:
http://www.cnblogs.com/xudong-bupt/p/3667729.html
求有环单链表中的环长、环起点、链表长
判断单链表是否有环
使用两个slow, fast指针从头开始扫描链表。指针slow 每次走1步,指针fast每次走2步。如果存在环,则指针slow、fast会相遇;如果不存在环,指针fast遇到NULL退出。
就是所谓的追击相遇问题:
求有环单链表的环长
在环上相遇后,记录第一次相遇点为Pos,之后指针slow继续每次走1步,fast每次走2步。在下次相遇的时候fast比slow正好又多走了一圈,也就是多走的距离等于环长。
设从第一次相遇到第二次相遇,设slow走了len步,则fast走了2*len步,相遇时多走了一圈:
环长=2*len-len。
求有环单链表的环连接点位置
第一次碰撞点Pos到连接点Join的距离=头指针到连接点Join的距离,因此,分别从第一次碰撞点Pos、头指针head开始走,相遇的那个点就是连接点。
在环上相遇后,记录第一次相遇点为Pos,连接点为Join,假设头结点到连接点的长度为LenA,连接点到第一次相遇点的长度为x,环长为R。
第一次相遇时,slow走的长度 S = LenA + x;
第一次相遇时,fast走的长度 2S = LenA + n*R + x;
所以可以知道,LenA + x = n*R; LenA = n*R -x;
求有环单链表的链表长
上述2中求出了环的长度;3中求出了连接点的位置,就可以求出头结点到连接点的长度。两者相加就是链表的长度。