单总体分布卡方拟合优度检验

原创 2013年12月02日 17:34:54


1 概率分布的检验

  1. 筛子是否均衡的检验

    考虑如下问题: 一枚骰子, 投掷600次, 出现1点到6点的次数如下

    Table 1: 骰子投掷次数数据
    1 2 3 4 5 6
    100 112 123 87 90 88

    试问骰子是否均匀

  2. 检验问题
    • 设骰子点数记为随机变量 Y , 取值为 1,2,,6 的概率分别为 p1,,p6
    • 检验如下假设: 原假设: H0:p1=p2=p6=1/6
    • 对立假设为: p1,,p6 不全相等
    • 采用哪个统计量来度量
  3. 卡方拟合优度检验
    • npi 为 n 次抛掷中 出现 i 点的理论频数
    • 记 ni 为n次抛掷中出现 i 点的次数
    • 取检验统计量为
      χ2=i=16(ninpi)2npi
    • 可以证明在原假设成立的条件下, 当样本量趋近于  时, 有
      χ2χ2(61)
    • 上述检验方法可以推广到概率不均等的情况
  4. 简单情形下定理的验证
    • 对于(0,1) 分布, 检验 Y 取值为1 的概率是否为 p
    • 此时卡方统计量为
      χ2=(Ynp)2np+((nY)n(1p))2n(1p)=(Ynp)2(1np+1n(1p))=(Ynp)2np(1p)=(Ynpnp(1p))2χ2(1)
  5. 卡方拟合优度的应用 -彩票数据
    • 彩票0-9 出现概率是否相同
    • 分布拟合
    Table 2: 近100期 6+1 彩票开奖号码-部分数据
    12112 2 6 2 3 9 8 3
    12113 0 5 0 1 7 8 1
    12114 9 2 9 2 4 1 9
    12115 7 9 6 6 2 9 1
    12116 8 2 2 1 9 1 9

    file: data/caipiao.csv

  6. 数据读取和检验结果
    • 在R软件中采用 chisq.test 函数进行卡方拟合优度检验
    • 首先给出 0-9 的频数统计
    caipiao<-as.matrix(read.table("data/caipiao.csv",header=F,sep=","))
    sj<-as.numeric(caipiao[,-1])
    a<-table(sj);names(a)<-0:9
    t(a)
    
          0  1  2  3  4  5  6  7  8  9
    [1,] 71 71 71 59 79 69 76 69 67 68
    
  7. 彩票数字均匀性检验
    chisq.test(a)
    
            Chi-squared test for given probabilities
    
    data:  a
    X-squared = 3.6571, df = 9, p-value = 0.9325
    

2 如何验证分布服从正态分布

  1. R 和matlab中的专门函数
    • 在R有专门的函数对数据的正态性进行检验,如
      • ‘shapiro.test’ which performs the Shapiro-Wilk test for normality.
      • 'ks.test' Perform a one- or two-sample Kolmogorov-Smirnov test.
    • 在Matlab中也有专门的函数
      • jbtest 实现 Bera-Jarque 检验
      • lillietest 实现Lilliefors 检验
      • kstest 实现了Kolmogorov-Smirnov 检验,可以检验分布和位置参数
  2. R 中正态分布检验举例
    set.seed(1314)
    x<-rnorm(200)
    y<-runif(200)
    shapiro.test(x)
    shapiro.test(y)
    
    	Shapiro-Wilk normality test
    
    data:  x
    W = 0.99, p-value = 0.1797
    
    	Shapiro-Wilk normality test
    
    data:  y
    W = 0.9506, p-value = 2.136e-06
    
  3. matlab进行lillietest检验
    x=normrnd(0,1,200,1);
    lillietest(x)
    y=unifrnd(0,1,200,1);
    lillietest(y)
    
    x=normrnd(0,1,200,1);
    lillietest(x)
    
    ans =
    
         0
    y=unifrnd(0,1,200,1);
    lillietest(y)
    
    ans =
    
         1
    

    ans=0 表示接受原假设, ans=1 表示拒绝原假设



相关文章推荐

分布的拟合和检验

【分布的拟合】把样本的分布函数(也称为“经验分布函数”),与某种理论的分布函数(如正态分布)叠放在一起,进行比较。 例如:score = xlsread('examp02_14.xls','Shee...

SPSS中八类常用非参数检验之一:总体分布的卡方(Chi-square)检验

在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。这可以通过绘制样本数据直方图的方法来进行粗略的判断。如果需要进行比较准确的判断,则需要使用非参数检验的方法...

SparkML之假设性检验(二)分布拟合检验

1.什么是分布拟合检验 在实际问题中,有时不能预知总体服从什么类型的分布,这时就需要根据样本来检验关于分布的假设。比如依据大数定理,我们假设一组生产零件是成正态分布的,但是这个所为的成正态分布也只是我...

幂律分布拟合曲线

  • 2012年12月16日 17:31
  • 3KB
  • 下载

应用统计学与R语言实现学习笔记(七)——拟合优度检验

Chapter 7 Goodness of Fit本篇是第七章,内容是拟合优度检验。
  • ESA_DSQ
  • ESA_DSQ
  • 2017年05月10日 01:43
  • 928

Matlab拟合曲线之幂律分布

收集的问题: 如何用matlab来拟合幂律分布,怎样将拟合值和实际值进行对比,放在一个图中,又如何检验实际数据是否符合拟合函数。如果不符合,如何来直接判断实际数据服从什么样的函数分布呢 ...

几种常见的用于拟合的分布

1.高斯分布

拟合优度

先介绍几个相关的数学概念,然后通过实例说明拟合优度1 Pearson相关系数皮尔森相关系数(Pearson correlation coefficient)也称皮尔森积矩相关系数(Pearson pr...

样本统计量与总体的关系,抽样分布的概念性质

本文对抽样分布的概念、无偏差和最小偏差等性质,以及中心极限定理和样本比例的抽样分布进行总结。2 抽样分布基本概念 参数(parameter):参数是对总体的数值描述,因为是总体,所以值经常是未知的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:单总体分布卡方拟合优度检验
举报原因:
原因补充:

(最多只允许输入30个字)