拟合优度:Pearson 卡方检验

 

假设检验问题就是通过从有关总体中抽取一定容量的样本,利用样本去检验总体分布是否具有某种特性。假设检验问题大致分为两大类:

  • 参数型假设检验: 即总体的分布形式已知(如正态、指数、二项分布等),总体分布依赖于未知参数(或参数向量), 要检验的是有关未知参数的假设。

  • 非参数型假设检验: 如果总体分布形式未知,此时就需要有一种与总体分布族的具体数学形式无关的统计方法,称为非参数方法。例如,检验一批数据是否来自某个已知的总体,就属于这类问题。 常用的非参数假设检验方法有:符号检验、符号秩和检验、秩和检验及Fisher 置换检验和拟合优度检验


目录

拟合优度(Goodness of Fit)

Pearson 卡方检验



拟合优度(Goodness of Fit

指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R^2。R^2的取值范围是[0,1]。R^2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归直线对观测值的拟合程度越差。拟合优度检验问题的提法如下:设有一个一维或多维随机变量X,令X0,…, Xn为总体X中抽取的简单样本,F是一已知的分布函数。

要利用样本X0,…, Xn检验假设:

H0:随机变量X的分布为F

导出这种假设检验的想法大致如下:

设法提出一个反映实际数据X0,…,Xn与理论分布F偏差的量D = D(X0,…,Xn; F)

如果D较大,如D>=C,则认为理论分布F与数据X0,…,Xn不符,因而否定H0

一般来说,理论和实际没有截然的符合或不符合。更恰当的提法是实际数据与理论分布符合的程度如何?因此通常对H0 的检验不是以“是”或“否”来回答,而是提供一个介于0和1之间的数字作为回答,即用此数作为符合程度的度量刻画,就具体样本算出D之值,记为d0。d0越接近1,表示样本与理论分布拟合的越好,因而原假设越可信。反之,它越接近0,则原假设H0越不可信。如果它低到指定的水平α之下,则就要否定H0了。讨论最多的拟合优度方法之一:Pearson 卡方检验。

Pearson 卡方检验

     

 


       

 


### 关于OpenCV与C语言的相关资料 尽管当前主流趋势倾向于使用C++开发OpenCV应用,但仍然存在一些资源可以帮助理解如何利用C语言接口来操作OpenCV。 #### OpenCV的C语言API简介 早期版本的OpenCV主要依赖于C语言编写的函数集。然而,在后续的发展过程中,官方逐渐转向推荐使用更现代化且功能更为强大的C++ API[^2]。即便如此,对于那些偏好或受限于特定环境而需采用C风格编程的情况而言,旧版遗留下来的大量材料依然具有参考价值。 #### 获取适用于C语言的OpenCV文档 由于新版本重点支持面向对象特性的增强以及简化语法结构的设计理念,因此针对纯C实现方式的支持力度有所减弱。不过,仍可通过访问历史存档或者查阅较早时期的书籍找到相关指导说明。例如,《Learning OpenCV》一书就涵盖了详尽介绍C接口使用的章节内容[^1]。 #### 基础图像处理实例 下面给出一段简单的代码片段用于展示怎样通过C语言调用OpenCV完成基本的颜色空间转换任务: ```c #include <opencv/cv.h> #include <opencv/highgui.h> int main(int argc, char **argv){ IplImage* src = cvLoadImage("example.jpg"); IplImage* gray = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); // 将BGR格式图片转为灰度图 cvCvtColor(src, gray, CV_BGR2GRAY); // 显示原图和处理后的图像 cvNamedWindow("Source", CV_WINDOW_AUTOSIZE ); cvShowImage("Source", src ); cvNamedWindow("Gray", CV_WINDOW_AUTOSIZE ); cvShowImage("Gray", gray ); cvWaitKey(0); // 清理释放内存 cvReleaseImage(&src); cvReleaseImage(&gray); cvDestroyAllWindows(); return 0; } ``` 此程序展示了加载一幅彩色JPEG格式的照片并将其转化为单通道灰色级表示形式的过程[^3]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值