简单总结R语言PCA相关函数
这里是数据集
| year | X1 | X2 | X3 |
|---|---|---|---|
| 1951 | 1 | -2.7 | -4.3 |
| 1952 | -5.3 | -5.9 | -3.5 |
| 1953 | -2 | -3.4 | -0.8 |
| 1954 | -5.7 | -4.7 | -1.1 |
| 1955 | -0.9 | -3.8 | -3.1 |
| 1956 | -5.7 | -5.3 | -5.9 |
| 1957 | -2.1 | -5 | -1.6 |
| 1958 | 0.6 | -4.3 | -0.2 |
| 1959 | -1.7 | -5.7 | 2 |
| 1960 | -3.6 | -3.6 | 1.3 |
| 1961 | 3 | -3.1 | -0.8 |
| 1962 | 0.1 | -3.9 | -1.1 |
| 1963 | -2.6 | -3 | -5.2 |
| 1964 | -1.4 | -4.9 | -1.7 |
| 1965 | -3.9 | -5.7 | -2.5 |
| 1966 | -4.7 | -4.8 | -3.3 |
| 1967 | -6 | -5.6 | -4.9 |
| 1968 | -1.7 | -6.4 | -5.1 |
| 1969 | -3.4 | -5.6 | -2.9 |
| 1970 | -3.1 | -4.2 | -2 |
| 1971 | -3.8 | -4.9 | -3.9 |
| 1972 | -2 | -4.1 | -2.4 |
| 1973 | -1.7 | -4.2 | -2 |
| 1974 | -3.6 | -3.3 | -2 |
| 1975 | -2.7 | -3.7 | 0.1 |
| 1976 | -2.4 | -7.6 | -2.2 |
princomp
这个函数是R中的标准PCA函数,可用cor,也可用cov协方差阵来做PCA
> pca <- princomp(temprature)
> summary(pca,loadings = T)
Importance of components:
Comp.1 Comp.2 Comp.3
Standard deviation 2.3927483 1.6766875 1.0093123 #标准差,特征值的平方根
Proportion of Variance 0.5991735 0.2942137 0.1066129 #方差比
Cumulative Proportion 0.5991735 0.8933871 1.0000000 #方差累积
#载荷阵,特征向量,(有些缺失值一直不知道为什么,回头在填坑)
Loadings:
Comp.1</

本文简要总结了R语言中进行主成分分析的方法,包括使用`princomp`和`principal`函数。`princomp`适用于相关系数矩阵,并提供得分和权重。而`principal`函数支持应用平行法则选择主成分,且可以设置旋转方法、计算得分及指定主成分数量。
最低0.47元/天 解锁文章
358

被折叠的 条评论
为什么被折叠?



