关闭

<LeetCode OJ> 52. N-Queens II

标签: 回溯法数学LeetCode数据结构面试
1031人阅读 评论(1) 收藏 举报
分类:

52. N-Queens II

My Submissions
Total Accepted: 39648 Total Submissions: 103862 Difficulty: Hard

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.

Subscribe to see which companies asked this question

Hide Tags
 Backtracking
Show Similar Problems

分析:

就是八皇后问题,最典型的回溯法问题

依次摆放1到N个皇后,每个皇后所在行均从第一列到第N列试探性摆放:每摆一次检查是否与已经摆好的皇后冲突,如果不冲突继续摆下一个皇后,如果冲突以后的皇后均不在以当前皇后的位置继续摆下去,即返回上一个皇后的下一个位置继续摆,

本文参考:<C/C++算法>回溯法及其常见面试题

class Solution {
public:
    //位置冲突算法   
    bool isConflict(int a[], int n)//a位置数组,n皇后个数   
    {  
        int i = 0, j = 0;  
        for (i = 2; i <= n; ++i)//i:位置   
        {
            for (j = 1; j <= i - 1; ++j)//j:位置   
            {
                if ((a[i] == a[j]) || (abs(a[i] - a[j]) == i - j))//1:在同一列上;2:在对角线上   
                    return false;   //冲突   
            }
        }
        return true;//不冲突   
    } 
    //八皇后问题:回溯算法(递归版)   
    void QueensN(int a[],int k,int n) //参数k:递归摆放第k个皇后   
    {  
        int i = 0;  
        if (k > n)      //k>n:即k>8表示最后一个皇后摆放完毕   
            ++cnt;  
        else{  //8个皇后未全部摆放完毕 
            for (i = 1; i <= n; ++i)//摆放第k个皇后时(转下一行)   
            { //依次从列顶端开始搜索,一直到列底端,直到找到合适位置,如果未找到,自动返回上层递归(回溯)   
                a[k] = i;  
                if (isConflict(a, k))  
                    QueensN(a,k + 1,n);//不冲突,递归摆放下一个皇后  
            }  
        }  
    } 
    int totalNQueens(int n) {
        cnt=0;
        int a[9]={0};
        QueensN(a,1,n);
        return cnt;
    }
private:
    int cnt;
};





注:本博文为EbowTang原创,后续可能继续更新本文。如果转载,请务必复制本条信息!

原文地址:http://blog.csdn.net/ebowtang/article/details/50585984

原作者博客:http://blog.csdn.net/ebowtang

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:508186次
    • 积分:7733
    • 等级:
    • 排名:第2902名
    • 原创:239篇
    • 转载:50篇
    • 译文:0篇
    • 评论:162条
    博客专栏
    个人介绍
    非CS科班出身,喜欢用C/C++思考数学 ,专注于图像处理和软件开发!本博客基于交流和记录学习的历程为目的,与诸君共勉,欢迎交流。同时,博文有不少文字并非一字一字地敲打,若侵权,请联系本人,

    E-mail:tangyb7172@foxmail.com
    最新评论