tensorflow学习——tfreader格式,队列读取数据tf.train.shuffle_batch()

本文介绍了TensorFlow中的tf.train.shuffle_batch()函数,用于创建随机批处理。该函数会将传入的张量加入到乱序队列,并通过dequeue_many操作形成批次。此外,还提到了需要手动关闭队列的重要性,并给出了使用tfreader格式存储和读取图片的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、说明
tf.train.shuffle_batch()
这个函数的功能是:Creates batches by randomly shuffling tensors.
但需要注意的是它是一种图运算,要跑在sess.run()里
This function adds the following to the current Graph:
在运行这个函数时它会在当前图上创建如下的东西:
A shuffling queue into which tensors from tensors are enqueued.
一个乱序的队列,进队的正是传入的tensors
A dequeue_many operation to create batches from the queue.
一个dequeue_many的操作从队列中推出成batch的tensor
A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors from tensors.
一个QueueRunner的线程,正是这个线程将传入的数据推进队列中.

创建一个队列之后,最好手动关闭。形式如下:

with tf.Session() as sess:
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    // do your things
    coord.request_stop()
    coord.join(threads)

2、例子:将图片存为tfreader格式,然后读出并恢复图片。
tensorflow数据读取机制:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值