PAC

投影尽可能分散->方差最大

PCA(主成分分析),其实就是根据数据之间的相关性来降低数据的维度,也就是说删除数据中不必要的,保留必要的。在数据之间或许存在某些变化,能够使数据之间相互转换。

其中需要了解的数学知识:

 

 

当基的数量少于向量本身的维数,则可以达到降维的效果。那么如果选择最优基呢?

对于数据该怎么优化呢?

 

按行均值化为

 

现在问题来了:如果我们必须使用一维来表示这些数据,又希望尽量保留原始的信息,你要如何选择?

通过上一节对基变换的讨论我们知道,这个问题实际上是要在二维平面中选择一个方向,将所有数据都投影到这个方向所在直线上,用投影值表示原始记录。这是一个实际的二维降到一维的问题。

那么如何选择这个方向(或者说基)才能尽量保留最多的原始信息呢?一种直观的看法是:希望投影后的投影值尽可能分散。

以上图为例,可以看出如果向x轴投影,那么最左边的两个点会重叠在一起,中间的两个点也会重叠在一起,于是本身四个各不相同的二维点投影后只剩下两个不同的值了,这是一种严重的信息丢失,同理,如果向y轴投影最上面的两个点和分布在x轴上的两个点也会重叠。所以看来x和y轴都不是最好的投影选择。我们直观目测,如果向通过第一象限和第三象限的斜线投影,则五个点在投影后还是可以区分的。

希望投影后的值尽可能分散,在数学上用“方差”来表示分散程度。对字段(将向量的组成的矩阵的一行视为一个字段)进行方差化,即每个字段中的每个元素与字段的均值的差的平方和。

 

 

由于上面的数据已经均值化了,所以字段的均值为0,故可表示为:

 

于是,最优化问题可描述为:寻找一个一维的基,能够使向量在基上的投影值的方差最大。

上面所讨论的方差对于二维降为一维很实用,那对于更高维呢?不能将所有的基都表示为同一向量吧,这样的话信息损失很严重。此时,我们用到协方差。

数学上可以用两个字段的协方差表示相关性。由于字段的均值已经认为的化为0,则:

 

 

当协方差为0的时候,表示字段完全独立。为了让协方差为0,我们选择第二个基时只能在与第一个基正交的方向上选择。因此最终选择的两个方向一定是正交的。

此时,我们将目标转化为:将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位(模为1)正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大(在正交的约束下,取最大的K个方差)。

为了便于计算,引入协方差矩阵:

假设我们只有a和b两个字段,那么我们将它们按行组成矩阵X:

 

然后我们用X乘以X的转置,并乘上系数1/m:

 

这个矩阵对角线上的两个元素分别是两个字段的方差,而其它元素是a和b的协方差。两者被统一到了一个矩阵的。

将其推广到一般情况:

设我们有m个n维数据记录,将其按列排成n乘m的矩阵X,设

后面进行协方差矩阵对角化。基本上是数学上的理论知识。也是PAC算法的精华部分。

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值