Pro Android学习笔记(一六八):发布应用(1):测试和适配

本文详细介绍了一个商用Android应用从测试到发布的全过程,包括不同设备的测试方法、如何利用Monkey工具进行随机事件测试、优化APK大小及提高运行效率的技巧、适配不同屏幕尺寸的方法、AndroidManifest.xml文件的设置细节等。

文章转载只能用于非商业性质,且不能带有虚拟货币、积分、注册等附加条件。转载须注明出处http://blog.csdn.net/flowingflying/以及作者@恺风Wei

在我们提交一个商用的Android应用前,我们需要确保应用有效。

测试

应用尽可能在不同的设备中进行测试。因为不同设备有不同的硬件规格,有一些提供真机测试的环境(大致是N多台真机通过扩展USB连接到某个服务器上,该服务器对外提供这些真机的应用测试环境,多台这样的服务器基本上可以覆盖市面上流行的机型),也可以利用AVD,配置成不同的设备。

Android SDK提供了Instrumentation类来帮助进行单元测试。不过这个我就很少用了,实际上对于开发人员(非测试人员)只要log做得足够的好就可以了。此外还有UI/Application Exerciser Monkey,它能够产生伪随机事件,如用户点击,触摸,用户手势,用来模拟用户的各种行为,包括不可预测的操作行为。我们编制的测试案例不一定能对所有场景进行覆盖,这个Monkey可以帮助。在adb的shell中使用,具体可以参见http://www.iteedu.com/handset/android/androidmanual/reference/monkey.php。下面是当中的一些摘要,具体使用可以通过--help来显示帮助。

基本语法:

$ adb shell monkey [options] <event-count>

启动你的程序并发送500个随见的事件给程序的例子:

$ adb shell monkey -p your.package.name -v 500</>

在完成开发进行测试/发布之前,我们需要删除我们在代码中不需要的debug信息,检查/res中是否有一些不再使用的文件(例如图片),以确保apk的大小,并有尽可能高的运行效率。

适配不同的屏幕尺寸

Android允许为不同尺寸的屏幕分别进行适配,在res/下,通过不同的文件夹名来标识,例如res/layout-large,具体见Pro Android学习笔记(四):了解Android资源(下)的最后部分“资源和配置的变更”。

在AndroidManifest中有个属性为<supports-screens>,其内容如下:

< supports-screens android:resizeable=["true"| "false"]
         android:smallScreens=["true" | "false"]
         android:normalScreens=["true" | "false"]
         android:largeScreens=["true" | "false"]
         android:xlargeScreens=["true" | "false"]
         android:anyDensity=["true" | "false"]
         android:requiresSmallestWidthDp="integer"
         android:compatibleWidthLimitDp="integer"
         android:largestWidthLimitDp="integer"/ >

有些应用商店对对此进行检查,例如Google Play,如果要支持小屏幕,则需要在此设置上samllScreens,否则不向小屏幕的手机显示你的应用。平板对应的是xLargeScreens,如果我们的应用之提供给平板,则该值为true,其他的均为false。

准备好AndroidManifest.xml

在上传至应用商店之前,AndroidManifest可能需要一些小修改。在设定我们应用包名时,不要使用com.example作为前缀,当然也不能使用com.google,com.android之类的,Google Play会进行检查,但是国内的应用商店就不太清楚,可能不会检查那么多。对于我们的应用,还是考虑严格或者规范地编写,而不是去挑战应用商店的检查情况。

android:icon除了可以作为<application>的属性外,还可以作为activity的属性,为特定的activity设定特定的icon。

如果我们应用对硬件或者平台功能有特定要求,可以在<uses-configuration>和<uses-feature>中进行设置。

<uses-configuration android:reqFiveWayNav=["true" | "false"]
                                android:reqHardKeyboard=["true" | "false"]
                                android:reqKeyboardType=["undefined" | "nokeys" | "qwerty" | "twelvekey"]
                                android:reqNavigation=["undefined" | "nonav" | "dpad" | "trackball" | "wheel"]
                                android:reqTouchScreen=["undefined" | "notouch" | "stylus" | "finger"] />

<uses-configuration>是对键盘、触摸屏、方向控制等用户输入有关的硬件。

< uses-feature
   android:name="string"
   android:required=["true" | "false"]
   android:glEsVersion="integer" / >

对于不满足这些要求的终端,Google Play不会向他们显示你的应用。例如我们要求必须支持多点触摸,则<uses-feature android:name="android.hardware.touchscreen.multitouch" android:required="true" />。例如游戏中要求支持OpenGL ES的某个版本以上,可以设定<uses-feature android:glEsVersion="0x00020000" android:required="true"/>。需要注意这两个设定和权限要求没有任何关联。如果android:required="false",则表示可以没有,并非必须没有。

在代码中,我们也可以向包管理器询问是否具备相关能力,然后根据不同的情况分别进行处理。

boolean hasBluetooth = getPackageManager().hasSystemFeature(PackageManager.FEATURE_BLUETOOTH);

 

相关链接: 我的Android开发相关文章

【源码免费下载链接】:https://renmaiwang.cn/s/2gdnj 《R语言数据挖掘方法及应用》由薛薇编写而成的一本系统阐述R语言在数据挖掘领域前沿技术的著作。该书旨在指导读者学会使用R语言进行高效、实用的数据分析与建模工作,涵盖了从理论基础到实践操作的全过程。作为一款功能强大且开源的统计计算图形处理平台,R语言凭借其丰富的工具库社区支持,在数据分析与可视化方面展现出显著优势。在数据挖掘领域,R语言提供了包括`caret`、`randomForest`、`tm`、`e1071`等广泛使用的专用包,这些工具能够帮助用户更便捷地进行数据预处理、特征选择、模型构建结果评估。全书首先介绍R语言的基本知识体系,涵盖环境配置与安装方法、基础语法规范以及常见数据类型分析等内容。这些基础知识是开展后续数据分析工作的必备技能,通过学习可以快速掌握R语言的核心功能。随后章节深入讲解了数据挖掘的主要概念与流程,包括数据清洗、转换整理探索性分析等环节,同时详细阐述了分类、聚类、关联规则挖掘及预测等多种典型任务的具体实施方法。这些内容有助于读者全面理解数据挖掘的整体架构及其核心工作步骤。在应用实践部分,薛薇老师结合真实案例展示了R语言在实际业务场景中的具体运用,例如市场细分分析、客户流失预测以及个性化推荐系统等。通过这些案例研究,读者可以深入学习如何利用相关工具包解决实际问题,并提升数据分析能力。此外,书中配套的“案例数据集”“代码资源”为读者提供了实践操作的机会,使理论知识能够更好地转化为动手技能。通过实际操作分析,读者可以加深对R语言数据挖掘方法的理解并灵活运用。总之,《R语言数据挖掘方法及应用》是一部全面讲解R语言在数据分析与建模领域的教材,无论你是刚开始学习的新人还是经验丰富的专业人士,都能从中获益匪浅。通过深入研读此书,你可以掌握R语言的数据挖掘技巧,并将其应用到实
内容概要:本文提出了一种基于改进粒子滤波算法的无人机三维航迹预测方法,并通过Matlab代码实现仿真验证。该方法针对传统粒子滤波在无人机轨迹预测中存在的粒子退化计算复杂度高等问题,引入优化策略提升滤波精度与效率,有效提高了对无人机运动轨迹的非线性、非高斯环境下的预测能力。文中详细阐述了算法原理、模型构建流程及关键步骤,包括状态转移建模、观测方程设计、重采样优化等,并结合三维空间中的实际飞行轨迹进行仿真实验,验证了所提方法相较于标准粒子滤波在位置预测误差收敛速度方面的优越性。; 适合人群:具备一定信号处理、导航估计算法基础,熟悉Matlab编程,从事无人系统、智能交通、航空航天等相关领域研究的研究生或科研人员; 使用场景及目标:①应用于无人机实时轨迹预测与状态估计系统中,提升飞行安全性与自主性;②为复杂环境下非线性动态系统的建模与滤波算法研究提供技术参考;③【预测】改进粒子滤波的无人机三维航迹预测方法(Matlab代码实现)支持后续扩展至多无人机协同跟踪与避障系统的设计与仿真; 阅读建议:建议结合Matlab代码逐模块分析算法实现细节,重点关注粒子滤波的改进机制与三维可视化结果对比,同时可尝试替换不同运动模型或噪声条件以深入理解算法鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值