关于Java的反射机制,你需要理解这些..

本文详细介绍了Java反射机制的基础用法,包括如何通过不同方式获取Class对象、动态加载类、获取方法、成员变量及构造函数信息,并展示了如何进行方法反射操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载请标明出处:
http://blog.csdn.net/forezp/article/details/53730429
本文出自方志朋的博客

反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制。【翻译于 官方文档】

本篇将从以下几个方面讲述反射的知识:

  • calss的使用
  • 方法的反射
  • 构造函数的反射
  • 成员变量的反射

一、什么是class类

在面向对象的世界里,万物皆对象。类是对象,类是java.lang.Class类的实例对象。另外class类只有java虚拟机才能new出来。任何一个类都是Class 类的实例对象。这实例对象有三种表达方式:

public class User{
}

public class ClassTest{
User u=new User();
 //方式1:
 Class c1=User.class;
//方式2:
Class c2=u.getClass();
//方式3:
Class c3=Class.forName("com.forezp.User");

//可以通过类的类型创建该类的实例对象
User user=(User)c1.newInstance();
}

二、class类的动态加载

Class.forName(类的全称);该方法不仅表示了类的类型,还代表了动态加载类。编译时刻加载类是静态加载、运行时刻加载类是动态加载类。

三、获取方法信息

基本的数据类型,void关键字都Class 类的实例;可以通过get
ame();getSimpleName()获取类的名称。

Class c1=String.class;
Class c2=int.class;
Class c3=void.class;
System.out.println(c1.getName());
System.out.println(c2.getSimpleName());

获取类的所有方法,并打印出来:

public static void printClassInfo(Object object){
        Class c=object.getClass();
        System.out.println("类的名称:"+c.getName());

        /**
         * 一个成员方法就是一个method对象
         * getMethod()所有的 public方法,包括父类继承的 public
         * getDeclaredMethods()获取该类所有的方法,包括private ,但不包括继承的方法。
         */
        Method[] methods=c.getMethods();//获取方法
        //获取所以的方法,包括private ,c.getDeclaredMethods();

        for(int i=0;i<methods.length;i++){
            //得到方法的返回类型
            Class returnType=methods[i].getReturnType();
            System.out.print(returnType.getName());
            //得到方法名:
            System.out.print(methods[i].getName()+"(");

            Class[] parameterTypes=methods[i].getParameterTypes();
            for(Class class1:parameterTypes){
                System.out.print(class1.getName()+",");
            }
            System.out.println(")");
        }
    }

public class ReflectTest {

        public static void main(String[] args){
                String s="ss";
                ClassUtil.printClassInfo(s);
        }
}

运行:

类的名称:java.lang.String

booleanequals(java.lang.Object,)

java.lang.StringtoString()

inthashCode()

四、获取成员变量的信息

也可以获取类的成员变量信息


 public static void printFiledInfo(Object o){

        Class c=o.getClass();
        /**
         * getFileds()获取public
         * getDeclaredFields()获取所有
         */
        Field[] fileds=c.getDeclaredFields();

        for(Field f:fileds){
            //获取成员变量的类型
            Class filedType=f.getType();
            System.out.println(filedType.getName()+" "+f.getName());
        }

    }

 public static void main(String[] args){
                String s="ss";
                //ClassUtil.printClassInfo(s);
                ClassUtil.printFiledInfo(s);
        }

运行:

[C value
int hash
long serialVersionUID
[Ljava.io.ObjectStreamField; serialPersistentFields
java.util.Comparator CASE_INSENSITIVE_ORDER
int HASHING_SEED
int hash32

五、获取构造函数的信息

public static void printConstructInfo(Object o){
        Class c=o.getClass();

        Constructor[] constructors=c.getDeclaredConstructors();
        for (Constructor con:constructors){
            System.out.print(con.getName()+"(");

            Class[] typeParas=con.getParameterTypes();
            for (Class class1:typeParas){
                System.out.print(class1.getName()+" ,");
            }
            System.out.println(")");
        }
    }

 public static void main(String[] args){
                String s="ss";
                //ClassUtil.printClassInfo(s);
                //ClassUtil.printFiledInfo(s);
                ClassUtil.printConstructInfo(s);
        }

运行:

java.lang.String([B ,)
java.lang.String([B ,int ,int ,)
java.lang.String([B ,java.nio.charset.Charset ,)
java.lang.String([B ,java.lang.String ,)
java.lang.String([B ,int ,int ,java.nio.charset.Charset ,)
java.lang.String(int ,int ,[C ,)
java.lang.String([C ,boolean ,)
java.lang.String(java.lang.StringBuilder ,)
java.lang.String(java.lang.StringBuffer ,)

六、方法反射的操作

获取一个方法:需要获取方法的名称和方法的参数才能决定一个方法。

方法的反射操作:

method.invoke(对象,参数列表);

举个例子:

class A{

    public void add(int a,int b){
        System.out.print(a+b);
    }

    public void toUpper(String a){
        System.out.print(a.toUpperCase());
    }
}

 public static void main(String[] args) {
        A a=new A();
        Class c=a.getClass();
        try {
            Method method=c.getMethod("add",new Class[]{int.class,int.class});
            //也可以 Method method=c.getMethod("add",int.class,int.class);
            //方法的反射操作
            method.invoke(a,10,10);
        }catch (Exception e){
            e.printStackTrace();
        }
    }

运行:

20

本篇文章已经讲解了java反射的基本用法, 它可以在运行时判断任意一个对象所属的类;在运行时构造任意一个类的对象;在运行时判断任意一个类所具有的成员变量和方法;在运行时调用任意一个对象的方法;生成动态代理。

优秀文章推荐:


扫码关注公众号有惊喜

(转载本站文章请注明作者和出处 方志朋的博客

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值