SharePoint online Multilingual support - Development(1)

本文介绍了如何使用客户端对象模型(CSOM)为SharePoint Online站点和列表设置多语言支持。通过示例代码展示了如何为不同语言环境配置站点及列表的标题和描述。
博客地址:http://blog.csdn.net/FoxDave

上一节讲了SharePoint Online网站多语言的实现原理机制,本节主要从编程的角度来谈一下如何进行相关的设置。
下面列出的代码函数方法在命令行中运行即可。至于Context如何获取可以参考我以前的blog。

Site和List级别的国际化
首先咱们先创建一个测试List,如下代码:
private static void CreateCustomList(ClientContext ctx, Web web)
        {
            ListCollection listCollection = ctx.Web.Lists;
            ctx.Load(listCollection, lists => lists.Include(list => list.Title).
                                            Where(list => list.Title == "LocalizeMe"));
            ctx.ExecuteQuery();
            // Create the list, if it's not there...
            if (listCollection.Count == 0)
            {
                ListCreationInformation newList = new ListCreationInformation();
                newList.Title = "LocalizeMe";
                newList.QuickLaunchOption = QuickLaunchOptions.On;
                newList.TemplateType = (int)ListTemplateType.GenericList;
                newList.Description = "LocalizeMe sample list";
                List list = web.Lists.Add(newList);
                ctx.ExecuteQuery();
            }
        }
上面的代码很简单,不做过多解释了,就是创建一个名为LocalizeMe的List。
接下来的代码演示了如何设置多语言的属性。

private static void LocalizeSiteAndList(ClientContext cc, Web web)
        {
            // Localize site title
            web.TitleResource.SetValueForUICulture("en-US", "Localize Me");
            web.TitleResource.SetValueForUICulture("fi-FI", "Kielikäännä minut");
            web.TitleResource.SetValueForUICulture("fr-FR", "Localize Me to French");
            // Site description
            web.DescriptionResource.SetValueForUICulture("en-US",
                                   "Localize Me site sample");
            web.DescriptionResource.SetValueForUICulture("fi-FI",
                                    "Kielikäännetty saitti");
            web.DescriptionResource.SetValueForUICulture("fr-FR",
                                    "Localize to French in description");
            web.Update();
            cc.ExecuteQuery();

            // Localize custom list which was created previously
            List list = cc.Web.Lists.GetByTitle("LocalizeMe");
            cc.Load(list);
            cc.ExecuteQuery();
            list.TitleResource.SetValueForUICulture("en-US", "Localize Me");
            list.TitleResource.SetValueForUICulture("fi-FI", "Kielikäännä minut");
            list.TitleResource.SetValueForUICulture("fr-FR", "French text for title");
            // Description
            list.DescriptionResource.SetValueForUICulture("en-US",
                                    "This is localization CSOM usage example list.");
            list.DescriptionResource.SetValueForUICulture("fi-FI",
                        "Tämä esimerkki näyttää miten voit kielikääntää listoja.");
            list.DescriptionResource.SetValueForUICulture("fr-FR",
                                "I have no idea how to translate this to French.");
            list.Update();
            cc.ExecuteQuery();
        }
简单说明一下,对于需要国际化的内容,我们需要获取对应的SharePoint Object之后,操作相应的XXResource属性,如上所示,对Site和List的Title和Description进行了国际化。
执行完代码之后,根据当前用户的prefer language,就可以显示不同的语言了。
### 关于 `distiluse-base-multilingual-cased-v1` 模型的使用指南 `distiluse-base-multilingual-cased-v1` 是一个基于 DistilBERT 的多语言句子嵌入模型,适用于多种自然语言处理任务,例如语义搜索、文本分类和聚类等。以下是对该模型的详细介绍和使用方法。 #### 1. 模型概述 `distiluse-base-multilingual-cased-v1` 是 Sentence-Transformers 库中的一个预训练模型,支持超过 100 种语言[^3]。它通过学习句子级别的表示,能够生成高质量的密集向量嵌入,这些嵌入可以用于计算文本之间的相似度或进行其他下游任务。 #### 2. 安装与依赖 在使用该模型之前,需要确保安装了必要的 Python 库。可以通过以下命令安装 Sentence-Transformers: ```bash pip install sentence-transformers ``` #### 3. 加载模型 加载 `distiluse-base-multilingual-cased-v1` 模型可以通过 Sentence-Transformers 提供的简单接口完成。以下是一个示例代码: ```python from sentence_transformers import SentenceTransformer # 加载模型 model = SentenceTransformer('distiluse-base-multilingual-cased-v1') # 输入文本 texts = ["necesito un seguro de inquilino", "我需要租房保险"] # 生成嵌入向量 embeddings = model.encode(texts) print(embeddings.shape) # 输出嵌入向量的形状 ``` 上述代码展示了如何加载模型并生成输入文本的嵌入向量。`encode` 方法会返回一个 NumPy 数组,其中每一行对应一个输入文本的嵌入向量[^3]。 #### 4. 使用内置管道功能 为了简化模型调用流程,可以利用 Sentence-Transformers 提供的内置管道功能。例如,可以通过以下方式批量处理数据: ```python from sentence_transformers import SentenceTransformer, util # 加载模型 model = SentenceTransformer('distiluse-base-multilingual-cased-v1') # 批量文本 texts = ["necesito un seguro de inquilino", "我需要租房保险"] # 计算相似度 embedding_1 = model.encode(texts[0]) embedding_2 = model.encode(texts[1]) cosine_similarity = util.cos_sim(embedding_1, embedding_2) print("Cosine Similarity:", cosine_similarity.item()) ``` 此代码片段展示了如何计算两个文本之间的余弦相似度。`util.cos_sim` 是 Sentence-Transformers 提供的一个便捷工具函数[^2]。 #### 5. 常见问题及解决方法 在使用过程中可能会遇到一些常见问题,例如导入错误或警告信息。以下是一些解决方案: - 如果遇到类似 `ImportError: attempted relative import with no known parent package` 的错误,可能是由于脚本路径问题导致的相对导入失败。可以通过调整脚本结构或将脚本移至顶层目录运行来解决[^4]。 - 如果出现 `protected_namespaces` 警告,可以尝试设置 `model_config['protected_namespaces'] = ()` 来消除警告。 #### 6. 进一步学习资源 为了更深入地了解和应用 `distiluse-base-multilingual-cased-v1` 模型,建议参考以下资源: - 官方文档:提供详细的 API 说明和使用示例[^1]。 - 研究论文:探索模型背后的理论基础和技术细节。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值