有12个大小相同的乒乓球,其中只有一个的重量和其他的不同,要求用一台没有砝码的天平称三次找出这个重量不同的球!
一个偶然的机会一位仁兄问我这样的问题,当时我以为那个球是重的(以前曾做过一道类似的,惯性思维),以为很简单,后来细想才知道是有难度的,而晚上睡觉签发了半小时也没有想通,那天睡觉是伴随着这个问题进入梦乡的,还好第二天想出了。
大致如下:将球编号 1 2 3 4 5 6 7 8 9 10 11 12 ;分成三组 ;
先 1234 与 5678 称
1 要是相等的话:
问题就出在第三组了,这个比较简单,就不分析了。
2不等的话: 假设 1234 重于 5678 那么就可能是1234中的一个球重了,或是5678中的一个球轻了;
现在关键在于如何额定是重还是轻 并要缩小范围;
我们就把 5678 与第一组中的12 组合下,即 156 和 278 ;再去称
a:相等的话 那么问题就出在 34 这两个球了 那么就要将34 称 那么重的就是问题球了,因为34 可能出的问题就是重 ;
b: 要是156重于278 那么可能是1重 或78中一个球轻 导致的,因为56可能出的问题只能是轻,2 可能出的问题是重 ,所以可以肯定他们没有出问题;那只要比较一下 78 要是相等 则是 1 重了 ,要是不等 那则是 轻的那个球是问题球了 ,
c: 这种情况的分析方法和b类似。就不重复了。
微软的一道面试题
最新推荐文章于 2020-08-24 16:22:00 发布