概率图模型7:推理与流动

1. 推理模式

概率图模型的推理模型有三种分别是:

causal reasoning/因果推理 :也就是知道了事件的一个原因后,我们会改变对事件结果的预估。

evidential reasoning/证据推理 :也就是当我们知道了事件的结果后,我们会改变对引发事件的原因的判断。

intercausal reasoning/原因间推理 :有人翻译为因果间推理,我以为这容易产生误解。intercausal reasoning的意思是,有多个原因导致了某个事件的发生,如果我们已经知道了事件的结果,那么对其中一个原因的观察,会改变我们对另一个原因的判断。

下面以图1.1的贝叶斯网络,逐一进行介绍。

这里写图片描述

图1.1:一个简单的贝叶斯网络

1.1 causal reasoning

刚才说过,这种推理模式就是知道了事件的一个原因后,我们会改变对事件结果的预估。这是最符合我们人类认知的一种推理模式。例如,在图1.1中,我们可以知道 P(l1)0.5 ,具体的求法,是根据因子分解的结果:

P(L=l1)=D,I,G,SP(D,I,G,S,L=l1)=D,I,G,SP(D)P(I)P(G|I,D)P(S|I)P(L=l1|G)(1.1)

同样的,我们也可以求得 P(l1|i0)0.39
P(L=l1)=D,G,SP(D,I=i0,G,S,L=l1)=D,G,SP(D)P(I=i0)P(G|I=i0,D)P(S|I=i0)P(L=l1|G)(1.2)

类似的, P(l1|i0,d0)0.51 。如图1.2:
这里写图片描述

从图1.2中我们可以发现,假如没有任何其他的信息,我们可以认为导师有0.5的可能性给某学生的推荐信为优秀。但是如果我们知道这个学生的智商很低,那么你还会像之前那么肯定导师会给他优秀吗?不会,因为一个学生智商很低,这就意味着,这个学生很可能在grade中成绩不好,因此导师推荐信为优秀的可能性就会降低,变成0.39。现在如果我们又知道,虽然这个学生智商低(因此他很可能grade比较低),但是,这门课难度很高。这样一来,似乎grade比较低也是情有可原的了,因此,当我们知道课程比较难后,我们发现,导师推荐信为优的概率又增加了,变成了0.51。

我们看到,随着我们对原因的认知和了解,我们对事物结果的判断也会发生改变。这种由于知道了原因,而推理结果的过程,就叫做causal reasoning.

1.2 evidential reasoning

这种推理模式也比较符合人们的认知,当我们知道了事件的结果后,我们会改变对引发事件的原因的判断,即由结果来分析原因。

类似于公式 (1.1,1.2) 的方法,你仍然可以从图1.1中,得到下面的这些概率:
这里写图片描述

在没有任何其他信息的情况下,凭借着以往的经验,我们可能会认为,某门课程考试难度比较难的概率为0.4.现在考完试后,我们找了一个学生的试卷,发现他grade比较低,这样就更加加深了我们对课程比较难的belief(信念),这相当于我们本来还不是特别确信(只有0.4的概率)这门课难,可是现在有一个大活人在这,成绩差,这就是证据啊!因此这件事情让我们更加有信息认为,这课确实很难。因此可以看到概率上升到了0.63.

同样的道理,在没有任何其他信息的情况下,凭借着以往的经验,我们可能会认为,某个学生有0.3的可能性为高智商。可是现在考完试后,我们发现这个学生的grade很低低,这个时候,你就不会像先前那样有底气的认为他高智商了。也就是说这样就更加加深了我们对这个学生是高智商的怀疑态度。因此可以看到概率由0.3下降到了0.08.

通过事情的结果,我们来猜测可能的原因,这种推理模式就叫做evidential reasoning。这也是为什么我们把看到的某次事件的结果叫做证据(evidence)的原因。

1.3 intercausal reasoning

有人翻译为因果间推理,我以为这容易产生误解。intercausal reasoning的意思是,有多个原因导致了某个事件的发生,如果我们已经知道了事件的结果,那么对其中一个原因的观察,会改变我们对另一个原因的判断。所以我把它叫做原因之间的推理。

这里写图片描述

在图1.4中,我们看到,如果我们已经知道这个学生成绩比较差。那么无论是对课程难度的判断,还是对学生智商的判断,都会因此出现改变。在上一节我们已经说过,这种推理模式叫证据推理。那么,现在来看一下,假如我们已经知道这个学生成绩差。但是这门课的难度相当大,那么,你还会像之前那样,信誓旦旦的跟我说,这个学生智商低吗?

不会的,之前,你之所以信誓旦旦的跟我说这个学生智商低,是因为我们只知道他grade比较低。这是证明他智商低的一个证据。但是现在当我们又额外的知道这门课很难后,这个grade的证明力显然就下降了。因为课程难,别说是他,换做其他人,成绩也很可能会低的。因此我们看到,此时,对这个学生智商的判断,由原来的 P(i1|g3)0.08 ,上升到了 P(i1|g3,d1)0.11

在我们已经知道事情结果的情况下,事件其中的一个原因会影响到我们对另一个原因的判断。这种由原因推理原因的过程,就叫做intercausal reasoning

这样说来,我们把它翻译为因果间推理似乎也有道理哦,因为“因”(Difficulty)经“果”(Grade)推到了另一个“因”(Intelligence),所以叫因果间推理。

1.4 综合

接下来,我们看一个综合的例子。

这里写图片描述

已知Grade=c,这幅图中,Grade到Difficulty是证据推理,difficulty->Grade->intelligence是因果间推理,intelligence到SAT时因果推理。

2. 概率影响的流动

通过第1节的例子的分析,我们发现一件事情会通过网络影响到另一件事情的判断,这种过程叫做概率影响的流动。

首先下面这几个是最能够让我们一下子接受的:

XYXYXWYXWYXWY(2.1)

condition on X change our beliefs about Y without observe W

如果你对公式(2.1)这几个结果还有怀疑或者不理解,那么请参考我们之前的图中例子,上面这几个式子依次对应着图中的:

given Grade(X) reason Letter(Y)

given Letter(X) reason Grade(Y)

given Difficulty(X) reason Letter(Y)

given Letter(X) reason Intelligence(Y)

given Grade(X) reason SAT(Y):(当我们知道一个学生成绩优秀时,更有理由相信他智商比较高,从而更有理由认为他在SAT中也会取得好成绩)

还有一种结构叫做 V 形结构:

XWY(2.2)

对于这种结构而言,如果我们没有观察到 W 或者W的后代结点,那么我们就没有办法从已知的 X 推理到Y.这种现象的解释也是很清晰的,例如如果我们不知道学生的成绩,也不知道导师推荐信的等级。那么一门课的难度,和这个学生的智商之间八竿子打不着。但是如果我们知道这个学生的成绩很高,并且课程难度比较大,那么我们就会非常有理由相信,这个学生是高智商的。或者我们不知道成绩,但是我们知道他的导师推荐信是优秀,那么这也说明这个学生grade应该很棒,在这个时候,如果我们知道课程成绩比较难,同样我们也很有理由认为,这个学生智商比较高。

刚才的推理模式,就是我们在第1节说的intercausal reasoning。显然,在intercausal reasoning中,我们必须要知道结果,或者是结果的结果。才有可能从一个原因推导到另一个原因。

因此在 V 形结构中,在没有观测到W Descendants(W) 的时候,概率影响时不能传导的。

这里写图片描述
有效迹active trails:

A trail X1,Xk is active given Z if:

– for any v-structure Xi1XiXi+1 we have that Xi or one of its descendants Z
– no other Xi is in Z <script type="math/tex" id="MathJax-Element-25">Z</script>

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值