概率图模型(02)上: 贝叶斯网中独立关系(因子分解 & 影响流动)

本文深入探讨了贝叶斯网络的基础,包括语义与因子分解、推断模式以及概率影响的流动性。通过链式法则推导出网络的因子分解,讨论了因果、证据和交叉因果推断,并解释了有效迹(Active Trail)的概念,特别是V型结构中的双边迹和其在概率影响流动中的角色。
摘要由CSDN通过智能技术生成

  本博客中 PGM 系列笔记以 Stanford 教授 Daphne Koller 的公开课 Probabilistic Graphical Model 为主线,并参阅 Koller著作及其翻译版对笔记加以补充。博文的章节编号与课程视频编号一致。
  博文持续更新(点击这里系列笔记目录页),文中提到的资源以及更多见 PGM 资源分享和课程简介

  第 02 部分视频分为两篇博文记录(可点击 Part 链接进入):

  Part 1:上篇主要讲解了贝叶斯网络(Bayesian Network Fundamentals)相关知识,从链式法则推导出网络的因子分解,讨论了不同推断的形式(Reasoning Patterns),网络中概率影响的流动性(Flow of Probabilistic Influence),介绍了有效迹(Active Trail)的定义,并举例 V 型结构(V-structure)和讲解四种双边迹
  Part 2:下篇将继续贝叶斯网络基础的讲解,主要目的在于诠释包括贝叶斯网络的两种等价观点,即条件独立和因子分解(Independence 和 Factorization)的等价性; 解释 d-分离I-Map 的概念,并介绍伯努利和多项式这两种朴素贝叶斯分类器。

1. 语义和因子分解 (Semantics & Factorization)

  语义:贝叶斯网结构语义的形式化定义。

1.1 学生例子

  课程中经常拿这个例子解释概念,故一开始先在这里列出来。
学生例子
  图中贝叶斯网络模型反映如下五个随机变量之间的关系:

变量 含义 取值
Difficulty 课程本身难度 0=easy, 1=diffcult
Intelligence 学生聪明程度 0=stupid, 1=smart
Grade 学生课程成绩 1=A, 2=B, 3=C
SAT 学生高考成绩 0=low, 1=high
Letter 可否得推荐信 0=未获得推荐信, 1=得到推荐信

1.2 链式法则和因子分解

  • 概率论中的链式法则

这里写图片描述
  由链式法则,我们可以知道学生例子中的联合分布可以分解为:

P(I,D,G,L,S)=P(I)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G,L)
  考虑到图中以及展现出来的变量之间的独立性关系,上式可以简化为下述的 因子分解
P(I,D,G,L,S)=P(I)P(D)P(G|I,D)P(L|G)P(S|I)
  这样,我们就将图体现的分布表示为一些 因子的乘积了(Distribution defined as a product of factors)。从而 条件概率的独立性可以直接从概率分布表达式看出来。 值得一提的是,可以注意到此时若给网络中添加节记作 X ,我们在计算联合分布 P(X,I,D,G,L,S) 时不需要写下 6 个新数字。在因子模型中,只需要修改与所添节点相连的结点变量的局部概率模型即可。
  我们可以从 形式化的角度陈述这样的结论,定义 因子分解

定义(因子分解): 令 G 为定义在 X1,...,Xn 上的一个贝叶斯网。若 P 可表示为乘积 P(X1,...Xn)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值