概率推理(贝叶斯推理)

一、随机事件

在一定条件下,可能发生也可能不发生的实验结果叫做随机事件。

随 机 事 件 ( 事 件 ) { 必 然 事 件 不 可 能 事 件 随机事件(事件)\begin{cases} 必然事件 \\ 不可能事件 \end{cases} {


二、概率的基本性质

1、对任一事件 A,有 0 ≤ P ( A ) ≤ 1 0 ≤ P(A) ≤ 1 0P(A)1 P ( A ˉ ) = 1 − P ( A ) P(\bar{A}) = 1-P(A) P(Aˉ)=1P(A)

2、必然事件 P ( M ) = 1 P(M) = 1 P(M)=1;不可能事件 P ( ∅ ) = 0 P(∅) = 0 P()=0

3、对任意两个事件,有 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A∪B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)

  • 若事件A、B互不相容(互斥),有 P ( A ∪ B ) = P ( A ) + P ( B ) P(A∪B)=P(A)+P(B) P(AB)=P(A)+P(B)
  • 若B ⊂ \subset A(事件B的发生必然导致事件A的发生),则A发生而B不发生
    ( P(A\B) ① )的概率为 ① = P ( A ) − P ( B ) ①=P(A)-P(B) =P(A)P(B)

4、若事件 A 1 , A 2 , ⋅ ⋅ ⋅ , A K A_{1} ,A_{2} ,···,A_{K} A1,A2,,AK两两互不相容的事件,即有 A i ∩ A j = ∅ ( i ≠ j ) A_{i} ∩A_{j} =∅(i≠j) AiAj=i=j,则 P ( ⋃ i = 1 k A i ) = P ( A 1 ) + P ( A 2 ) + ⋅ ⋅ ⋅ + P ( A K ) P(\bigcup_{i=1}^{k} A_{i})= P(A_{1}) +P(A_{2})+···+P(A_{K}) P(i=1kAi)=P(A1)+P(A2)++P(AK)

三、概率的常用计算公式

1、条件概率与乘法公式
P(A|B):在事件 B 已发生的条件下事件 A 发生的概率

P ( B ) > 0 P(B)>0 P(B)>0时, P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)
P ( B ) = 0 P(B)=0 P(B)=0时,规定 P ( A ∣ B ) = 0 P(A|B) =0 P(AB)=0, 由此得出乘法公式:

  • P ( A ∩ B ) = P ( A ∣ B ) ( B ) = P ( B ∣ A ) P ( A ) P(A\cap B)=P(A|B)(B)=P(B|A)P(A) P(AB)=P(AB)(B)=P(BA)P(A)
  • P ( A 1 A 2 ⋅ ⋅ ⋅ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋅ ⋅ ⋅ P ( A n ∣ A 1 A 2 ⋅ ⋅ ⋅ A n − 1 ) , P ( A 1 A 2 ⋅ ⋅ ⋅ A n − 1 ) > 0 P(A_{1}A_{2}···A_{n})=P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1}A_{2})···P(A_{n}|A_{1}A_{2}···A_{n-1}),P(A_{1}A_{2}···A_{n-1}) > 0 P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)P(A1A2An1)>0

2、独立性公式

  • P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A),则称事件A关于事件B是独立的
  • 事件A、B相互独立的充要条件 P ( A ∩ B ) = P ( A ) P ( B ) P(A \cap B)=P(A)P(B) P(AB)=P(A)P(B)

3、全概率公式
若事件 B 1 , B 2 , ⋅ ⋅ ⋅ B_{1} ,B_{2} ,··· B1,B2, 满足 B i ∩ B j = ∅ ( i ≠ j ) 互 斥 B_{i} ∩B_{j} =∅(i≠j) 互斥 BiBj=i=j P ( ⋃ i = 1 k B i ) = 1 , P ( B i > 0 ) , i = 1 , 2 , ⋅ ⋅ ⋅ P(\bigcup_{i=1}^{k} B_{i})=1,P(B_{i}>0),i=1,2,··· P(i=1kBi)=1P(Bi>0)i=12
对任一事件A,有下式成立(若 B i B_{i} Bi 只有 n 个也成立) ∑ i = 1 ∞ P ( A ∣ B i ) P ( B i ) \sum_{i=1}^{\infty } P(A|B_{i})P(B_{i}) i=1P(ABi)P(Bi)推导: P ( A ) = P ( A B 1 ) + P ( A B 2 ) + ⋅ ⋅ ⋅ + P ( A B n ) = P ( A ∣ B 1 ) ( B 1 ) + P ( A ∣ B 2 ) ( B 2 ) + ⋅ ⋅ ⋅ + P ( A ∣ B n ) ( B n ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) \begin{aligned} P(A)&=P(AB_{1})+P(AB_{2})+···+P(AB_{n})\\ &=P(A|B_{1})(B_{1}) +P(A|B_{2})(B_{2})+···+P(A|B_{n})(B_{n}) \\ &=\sum_{i=1}^{n } P(A|B_{i})P(B_{i}) \end{aligned} P(A)=P(AB1)+P(AB2)++P(ABn)=P(AB1)(B1)+P(AB2)(B2)++P(ABn)(Bn)=i=1nP(ABi)P(Bi)

4、贝叶斯(Bayes)公式(要求各事件彼此独立
若事件 B 1 , B 2 , ⋅ ⋅ ⋅ B_{1} ,B_{2} ,··· B1,B2, 满足全概率公式条件,则对于任一事件 A (P(A) > 0)有下式成立(若 B i B_{i} Bi 只有 n 个也成立)
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ i = 1 ∞ P ( A ∣ B i ) P ( B i ) P(B_{i}|A)=\frac{P(A|B_{i})P(B_{i})}{\sum_{i=1}^{\infty } P(A|B_{i})P(B_{i})} P(BiA)=i=1P(ABi)P(Bi)P(ABi)P(Bi)


四、概率推理方法(不精确推理)
概率方法不精确性推理的目的就是求出在证据 E 下结论 H 发生的概率 P(H|E)

概率推理方法具有较强的理论基础和较好的数学描述。当证据和结论彼此独立时,计算并不复杂,但是获取概率数据相当困难。如果证据间存在依赖关系,那么不能直接采用这种方法。

1、设有产生式规则:IF E THEN H

对象说明
E证据/前提条件
H结论
目的求 P(H|E)
P(H)H 的先验概率

使用贝叶斯方法用于不精确推理的一个原始条件是:P(E)、P(E|H)、P(H)已知,有 P ( H ∣ E ) = P ( E ∣ H ) P ( H ) P ( E ) P(H|E)=\frac{P(E|H)P(H)}{P(E)} P(HE)=P(E)P(EH)P(H)

2、若一个证据 E 支持多个假设 H 1 , H 2 , ⋅ ⋅ ⋅ , H n H_{1},H_{2},···,H_{n} H1H2Hn,即 IF E THEN H i H_{i} Hi,i = 1,2,···,n,则可得贝叶斯公式 P ( H i ∣ E ) = P ( E ∣ H i ) P ( H i ) ∑ j = 1 n P ( E ∣ H j ) P ( H j ) , i = 1 , 2 , ⋅ ⋅ ⋅ , n P(H_{i}|E)=\frac{P(E|H_{i})P(H_{i})}{\sum_{j=1}^{n } P(E|H_{j})P(H_{j})},i=1,2,···,n P(HiE)=j=1nP(EHj)P(Hj)P(EHi)P(Hi),i=1,2,,n

3、若有多个证据 E 1 , E 2 , ⋅ ⋅ ⋅ , E m E_{1},E_{2},···,E_{m} E1E2Em 支持多个假设 H 1 , H 2 , ⋅ ⋅ ⋅ , H n H_{1},H_{2},···,H_{n} H1H2Hnn为结论 H 的个数),并且每个证据都以一定程度支持结论,则可得贝叶斯公式 P ( H i ∣ E 1 E 2 ⋅ ⋅ ⋅ E m ) = P ( E 1 ∣ H i ) P ( E 2 ∣ H i ) ⋅ ⋅ ⋅ P ( E m ∣ H i ) P ( H i ) ∑ j = 1 n P ( E 1 ∣ H j ) P ( E 2 ∣ H j ) ⋅ ⋅ ⋅ P ( E m ∣ H j ) P ( H j ) P(H_{i}|E_{1}E_{2}···E_{m})=\frac{P(E_{1}|H_{i})P(E_{2}|H_{i})···P(E_{m}|H_{i})P(H_{i})}{\sum_{j=1}^{n } P(E_{1}|H_{j})P(E_{2}|H_{j})···P(E_{m}|H_{j})P(H_{j})} P(HiE1E2Em)=j=1nP(E1Hj)P(E2Hj)P(EmHj)P(Hj)P(E1Hi)P(E2Hi)P(EmHi)P(Hi)此时,知道P( H i H_{i} Hi), P ( E 1 ∣ H i ) 、 P ( E 2 ∣ H i ) 、 ⋅ ⋅ ⋅ 、 P ( E m ∣ H i ) P(E_{1}|H_{i})、P(E_{2}|H_{i})、···、P(E_{m}|H_{i}) P(E1Hi)P(E2Hi)P(EmHi),就可求得 P ( H i ∣ E 1 E 2 ⋅ ⋅ ⋅ E m ) P(H_{i}|E_{1}E_{2}···E_{m}) P(HiE1E2Em)

五、例题

1、设 H 1 , H 2 , H 3 H_{1},H_{2},H_{3} H1H2H3 为三个结论,E 是支持这些结论的证据,且已知:

P ( H 1 ) = 0.3 P(H_{1}) = 0.3 P(H1)=0.3 P ( H 2 ) = 0.4 P(H_{2}) = 0.4 P(H2)=0.4 P ( H 3 ) = 0.5 P(H_{3}) = 0.5 P(H3)=0.5
P ( E ∣ H 1 ) = 0.5 P(E|H_{1}) = 0.5 P(EH1)=0.5 P ( E ∣ H 2 ) = 0.3 P(E|H_{2}) = 0.3 P(EH2)=0.3 P ( E ∣ H 3 ) = 0.4 P(E|H_{3}) = 0.4 P(EH3)=0.4

P ( H 1 ∣ E ) , P ( H 2 ∣ E ) , P ( H 3 ∣ E ) P(H_{1}|E),P(H_{2}|E),P(H_{3}|E) P(H1E)P(H2E)P(H3E) 的值。

:根据题意 n = 3,分别将 i = 1,2,3 代入下列公式 P ( H i ∣ E ) = P ( E ∣ H i ) P ( H i ) ∑ j = 1 n P ( E ∣ H j ) P ( H j ) , i = 1 , 2 , ⋅ ⋅ ⋅ , n P(H_{i}|E)=\frac{P(E|H_{i})P(H_{i})}{\sum_{j=1}^{n } P(E|H_{j})P(H_{j})},i=1,2,···,n P(HiE)=j=1nP(EHj)P(Hj)P(EHi)P(Hi),i=1,2,,n
P ( H 1 ∣ E ) = P ( E ∣ H 1 ) P ( H 1 ) P ( E ∣ H 1 ) P ( H 1 ) + P ( E ∣ H 2 ) P ( H 2 ) + P ( E ∣ H 3 ) P ( H 3 ) = 0.15 0.15 + 0.12 + 0.2 ( ≈ 0.32 ) = 0.32 \begin{aligned} P(H_{1}|E)&=\frac{P(E|H_{1})P(H_{1})}{P(E|H_{1})P(H_{1})+P(E|H_{2})P(H_{2})+P(E|H_{3})P(H_{3})}\\ &=\frac{0.15}{0.15+0.12+0.2}(\approx0.32 )\\ &=0.32 \end{aligned} P(H1E)=P(EH1)P(H1)+P(EH2)P(H2)+P(EH3)P(H3)P(EH1)P(H1)=0.15+0.12+0.20.15(0.32)=0.32
P ( H 2 ∣ E ) = 0.26 , P ( H 3 ∣ E ) = 0.43 P(H_{2}|E)=0.26,P(H_{3}|E)=0.43 P(H2E)=0.26P(H3E)=0.43
计算结果表明:由于证据 E 的出现, H 1 H_{1} H1 成立的可能性略有增加,而 H 2 H_{2} H2 H 3 H_{3} H3 成立的可能性却有不同程度的下降。

2、已知:

P ( H 1 ) = 0.4 P(H_{1}) = 0.4 P(H1)=0.4 P ( H 2 ) = 0.3 P(H_{2}) = 0.3 P(H2)=0.3 P ( H 3 ) = 0.3 P(H_{3}) = 0.3 P(H3)=0.3
P ( E 1 ∣ H 1 ) = 0.5 P(E_{1}|H_{1}) = 0.5 P(E1H1)=0.5 P ( E 1 ∣ H 2 ) = 0.6 P(E_{1}|H_{2}) = 0.6 P(E1H2)=0.6 P ( E 1 ∣ H 3 ) = 0.3 P(E_{1}|H_{3}) = 0.3 P(E1H3)=0.3
P ( E 2 ∣ H 1 ) = 0.7 P(E_{2}|H_{1}) = 0.7 P(E2H1)=0.7 P ( E 2 ∣ H 2 ) = 0.9 P(E_{2}|H_{2}) = 0.9 P(E2H2)=0.9 P ( E 2 ∣ H 3 ) = 0.1 P(E_{2}|H_{3}) = 0.1 P(E2H3)=0.1

P ( H 1 ∣ E 1 E 2 ) , P ( H 2 ∣ E 1 E 2 ) , P ( H 3 ∣ E 1 E 2 ) P(H_{1}|E_{1}E_{2}),P(H_{2}|E_{1}E_{2}),P(H_{3}|E_{1}E_{2}) P(H1E1E2)P(H2E1E2)P(H3E1E2) 的值。
:根据题意 n = 3,m = 2 ,分别将 i = 1,2,3 代入下列公式
P ( H i ∣ E 1 E 2 ⋅ ⋅ ⋅ E m ) = P ( E 1 ∣ H i ) P ( E 2 ∣ H i ) ⋅ ⋅ ⋅ P ( E m ∣ H i ) P ( H i ) ∑ j = 1 n P ( E 1 ∣ H j ) P ( E 2 ∣ H j ) ⋅ ⋅ ⋅ P ( E m ∣ H j ) P ( H j ) P(H_{i}|E_{1}E_{2}···E_{m})=\frac{P(E_{1}|H_{i})P(E_{2}|H_{i})···P(E_{m}|H_{i})P(H_{i})}{\sum_{j=1}^{n } P(E_{1}|H_{j})P(E_{2}|H_{j})···P(E_{m}|H_{j})P(H_{j})} P(HiE1E2Em)=j=1nP(E1Hj)P(E2Hj)P(EmHj)P(Hj)P(E1Hi)P(E2Hi)P(EmHi)P(Hi) P ( H 1 ∣ E 1 E 2 ) = P ( E 1 ∣ H 1 ) P ( E 2 ∣ H 1 ) P ( H 1 ) P ( E 1 ∣ H 1 ) P ( E 2 ∣ H 1 ) P ( H 1 ) + P ( E 1 ∣ H 2 ) P ( E 2 ∣ H 2 ) P ( H 2 ) + P ( E 1 ∣ H 3 ) P ( E 2 ∣ H 3 ) P ( H 3 ) = 0.45 \begin{aligned}P(H_{1}|E_{1}E_{2})&=\frac{P(E_{1}|H_{1})P(E_{2}|H_{1})P(H_{1})}{ P(E_{1}|H_{1})P(E_{2}|H_{1})P(H_{1}) + P(E_{1}|H_{2})P(E_{2}|H_{2})P(H_{2})+ P(E_{1}|H_{3})P(E_{2}|H_{3})P(H_{3})}\\ &=0.45\end{aligned} P(H1E1E2)=P(E1H1)P(E2H1)P(H1)+P(E1H2)P(E2H2)P(H2)+P(E1H3)P(E2H3)P(H3)P(E1H1)P(E2H1)P(H1)=0.45
P ( H 2 ∣ E 1 E 2 ) = 0.52 , P ( H 2 ∣ E 1 E 2 ) = 0.03 P(H_{2}|E_{1}E_{2}) = 0.52,P(H_{2}|E_{1}E_{2})=0.03 P(H2E1E2)=0.52P(H2E1E2)=0.03
计算结果表明:由于证据 E 1 E_{1} E1 E 2 E_{2} E2 的出现,使 H 1 H_{1} H1 H 2 H_{2} H2 成立的有不同程度的增加,而 H 3 H_{3} H3 成立的可能性下降了。

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
贝叶斯推理是基于贝叶斯定理的一种统计学方法,用于根据已知的先验知识和新的观测数据来更新我们对事件发生概率的信念。在Python中,可以使用多种库来进行贝叶斯推理,其中较为常用的是PyMC3和PyStan。 PyMC3是一个基于Python的概率编程库,它提供了一个灵活的语法来构建概率模型,并使用马尔科夫链蒙特卡洛(MCMC)算法进行推断。通过定义概率模型的先验分布和似然函数,可以使用PyMC3来进行参数估计、假设检验和预测。 以下是一个简单示例,使用PyMC3进行贝叶斯推理: ```python import pymc3 as pm import numpy as np # 创建观测数据 data = np.array([1, 0, 1, 1, 0, 0, 1, 0, 1]) # 定义先验概率 prior_prob = 0.5 # 定义模型 with pm.Model() as model: # 定义参数 theta = pm.Beta('theta', alpha=1, beta=1) # 定义似然函数 likelihood = pm.Bernoulli('likelihood', p=theta, observed=data) # 进行推断 trace = pm.sample(1000, tune=1000) # 分析结果 pm.plot_posterior(trace) ``` 在上述示例中,我们使用Beta分布作为参数的先验分布,并使用Bernoulli分布作为似然函数。通过`pm.sample()`函数进行MCMC采样,得到参数的后验分布,并使用`pm.plot_posterior()`函数可视化结果。 另外,PyStan是一个Python接口,用于Stan概率编程语言的推断。Stan是一个用于贝叶斯统计建模和推断的建模语言,它提供了更高级的建模语法和更高效的推断算法。 以上是在Python中使用贝叶斯推理的简单介绍,希望对你有帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值