caffe python批量抽取图像特征

caffe在[1]讲到如何看一个图片的特征和分类结果,但是如何批量抽取特征呢?可以使用c++的版本,这里我们谈下如何用python批量抽取特征。

首先,我们要注意caffe filter_visualization.ipynb的程序中deploy.prototxt中网络每一轮的图片batch是10, 这个数刚好和oversample=true的crop数量是一样的,也就是net一轮forward 刚好是一张图片的10个crop。

第一种,oversample = true的情况, 也就是每张图片会产生10张crop的图片: center, 4 corner, 和mirror

假如我们要抽取两张图片, 每张图片有10个crop

首先是修改deploy.prototxt: input_dim : 20

然后:将imagelist 放入predict参数。

scores = net.predict([caffe.io.load_image(caffe_root + "building.jpg"), caffe.io.load_image(caffe_root + "thumb.jpg")])

最后用

net.blobs['fc7'].data[4]
net.blobs['fc7'].data[14]

import numpy as np
import scipy
caffe_root = '/home/hduser/Project/caffe/'
import sys
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值