caffe学习笔记15-caffe批量提取特征

extract_feature_example.sh:

#!/usr/bin/env sh
# args for EXTRACT_FEATURE
TOOL=./build/tools
MODEL=./examples/image_test/caffenet_train/caffenet_train_iter_5000.caffemodel #下载或自己训练得到的caffe model
PROTOTXT=./examples/image_test/train_val10.prototxt # 网络定义
LAYER=fc7 # 提取层的名字,如提取fc7等
LEVELDB=./examples/image_test/temp_features/features_fc7 # 保存的leveldb路径
BATCHSIZE=10

# args for LEVELDB to MAT
DIM=4096 # 需要手工计算feature长度
# DIM=290400 # feature长度,conv1
# DIM=43264 # conv5
OUT=./examples/image_test/temp_features/features_fc7.mat #.mat文件保存路径
BATCHNUM=4 # 有多少个batch,默认提取的都是val数据集的特征,200张图片,BATCHSIZE*BATCHNUM为提取的图片的总数200张

                            #提多了都是重复的,又从第一个batch提取

$TOOL/extract_features.bin  $MODEL $PROTOTXT $LAYER $LEVELDB $BATCHSIZE lmdb
python lmdb2mat.py $LEVELDB $BATCHNUM  $BATCHSIZE $DIM $OUT

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值