搜索插入位置

本文介绍了一种改进的二分查找算法,该算法不仅能在已排序数组中查找指定值,还能在未找到该值时返回其合适的插入位置。通过调整左右指针,最终返回的索引即为插入点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:给定一个排序数组和一个目标值,如果在数组中找到目标值则返回索引。如果没有,返回到它将会被按顺序插入的位置。

你可以假设在数组中无重复元素。

样例:

[1,3,5,6],5 → 2

[1,3,5,6],2 → 1

[1,3,5,6], 7 → 4

[1,3,5,6],0 → 0

解题的思路跟上一节的二分查找是一模一样的,在介绍二分查找的时候,还记得我们首先写了一个数组无重复元素时的查找程序(详见:点击打开链接),这与此题是几乎一样的,不同之处仅在此题中要求若查不到,返回一个插入的位置。所以代码可以在上一节的基础上略作修改:

class Solution:
    """
    @param A : a list of integers
    @param target : an integer to be inserted
    @return : an integer
    """
    def searchInsert(self, A, target):
        
        left, right = 0, len(A) - 1
        # while循环解决的问题是:搜到返回,搜不到则只是改变了两个指针
        while left <= right:
            mid = (left + right) // 2
            if A[mid] == target:
                return mid
            if A[mid] > target:
                right = mid - 1
            if A[mid] < target:
                left = mid + 1
        # 经过上面的循环,left的位置其实就是应该插入的位置了
        return left
        # write your code here


程序一直到第18行都与无重复元素的二分查找一致,不同的只在第20行,返回的是left指针。


程序运行完第18行,会产生什么效用呢?如果数组中有查找的目标,那么目标的索引就已经返回了;而如果没有,那么left和right两个指针就会一直“逼近”目标应该被插入的位置,但是因为数组中根本不存在这个目标元素,所以,我们可以想象:当left与right重合(也就是都指向一个元素了),那么此时可以分两种情况讨论:


1. 例如:[1, 3, 5, 6]中查找2,最后left与right都指向元素1了,1 < 2,所以执行left = mid + 1;

2.例如:[1, 3, 5, 6]中查找0,最后left与right都指向元素1了,1 > 2,所以执行right = mid - 1;

不论那种情况,毫无疑问,left代表的索引就是应该插入的位置,所以程序最后return left

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值