题目描述:给定一个排序数组和一个目标值,如果在数组中找到目标值则返回索引。如果没有,返回到它将会被按顺序插入的位置。
你可以假设在数组中无重复元素。
样例:
[1,3,5,6],5 → 2
[1,3,5,6],2 → 1
[1,3,5,6], 7 → 4
[1,3,5,6],0 → 0
解题的思路跟上一节的二分查找是一模一样的,在介绍二分查找的时候,还记得我们首先写了一个数组无重复元素时的查找程序(详见:点击打开链接),这与此题是几乎一样的,不同之处仅在此题中要求若查不到,返回一个插入的位置。所以代码可以在上一节的基础上略作修改:
class Solution:
"""
@param A : a list of integers
@param target : an integer to be inserted
@return : an integer
"""
def searchInsert(self, A, target):
left, right = 0, len(A) - 1
# while循环解决的问题是:搜到返回,搜不到则只是改变了两个指针
while left <= right:
mid = (left + right) // 2
if A[mid] == target:
return mid
if A[mid] > target:
right = mid - 1
if A[mid] < target:
left = mid + 1
# 经过上面的循环,left的位置其实就是应该插入的位置了
return left
# write your code here
程序一直到第18行都与无重复元素的二分查找一致,不同的只在第20行,返回的是left指针。
程序运行完第18行,会产生什么效用呢?如果数组中有查找的目标,那么目标的索引就已经返回了;而如果没有,那么left和right两个指针就会一直“逼近”目标应该被插入的位置,但是因为数组中根本不存在这个目标元素,所以,我们可以想象:当left与right重合(也就是都指向一个元素了),那么此时可以分两种情况讨论:
1. 例如:[1, 3, 5, 6]中查找2,最后left与right都指向元素1了,1 < 2,所以执行left = mid + 1;
2.例如:[1, 3, 5, 6]中查找0,最后left与right都指向元素1了,1 > 2,所以执行right = mid - 1;
不论那种情况,毫无疑问,left代表的索引就是应该插入的位置,所以程序最后return left