LSH(Locality Sensitive Hashing)原理与实现

LSH(局部敏感哈希)是一种用于海量高维数据快速查找最近邻的算法,它通过特殊设计的hash函数,使相似数据映射到相同hash值的概率高,不相似数据映射概率低。本文介绍了min-hash和P-stable hash两种LSH方法,详细阐述了其原理、构建过程和相似性搜索算法,旨在解决高维数据的相似性检测问题。
摘要由CSDN通过智能技术生成

LSH(Locality Sensitive Hashing)翻译成中文,叫做“局部敏感哈希”,它是一种针对海量高维数据的快速最近邻查找算法。

在信息检索,数据挖掘以及推荐系统等应用中,我们经常会遇到的一个问题就是面临着海量的高维数据,查找最近邻。如果使用线性查找,那么对于低维数据效率尚可,而对于高维数据,就显得非常耗时了。为了解决这样的问题,人们设计了一种特殊的hash函数,使得2个相似度很高的数据以较高的概率映射成同一个hash值,而令2个相似度很低的数据以极低的概率映射成同一个hash值。我们把这样的函数,叫做LSH(局部敏感哈希)。LSH最根本的作用,就是能高效处理海量高维数据的最近邻问题

定义

我们将这样的一族hash函数 H={ h:SU} H = { h : S → U } 称为是 (r1,r2,p1,p2) ( r 1 , r 2 , p 1 , p 2 ) 敏感的,如果对于任意 H H 中的函数 h ,满足以下2个条件:

  1. 如果 d(O1,O2)<r1 d ( O 1 , O 2 ) < r 1 ,那么 Pr[h(O1)=h(O2)]p1 P r [ h ( O 1 ) = h ( O 2 ) ] ≥ p 1
  2. 如果 d(O1,O2)>r2 d ( O 1 , O 2 ) > r 2 ,那么 Pr[h(O1)=h(O2)]p2 P r [ h ( O 1 ) = h ( O 2 ) ] ≤ p 2

其中, O1,O2S O 1 , O 2 ∈ S ,表示两个具有多维属性的数据对象, d(O1,O2) d ( O 1 , O 2 ) 为2个对象的相异程度,也就是1 - 相似度。其实上面的这两个条件说得直白一点,就是当足够相似时,映射为同一hash值的概率足够大;而足够不相似时,映射为同一hash值的概率足够小。

相似度的定义根据实际情况自己决定(有关数据对象相似度的比较,详情可以参考我的另一篇博文:数据相似性的度量方法总结),后面我们可以看到,针对不同的相似度测量方法,局部敏感哈希的算法设计也不同,我们主要看看在两种最常用的相似度下,两种不同的LSH:

  1. 使用Jaccard系数度量数据相似度时的min-hash
  2. 使用欧氏距离度量数据相似度时的P-stable hash

当然,无论是哪种LSH,其实说白了,都是将高维数据降维到低维数据,同时,还能在一定程度上,保持原始数据的相似度不变。LSH不是确定性的,而是概率性的,也就是说有一定的概率导致原本很相似的数据映射成2个不同的hash值,或者原本不相似的数据映射成同一hash值。这是高维数据降维过程中所不能避免的(因为降维势必会造成某种程度上数据的失真),不过好在LSH的设计能够通过相应的参数控制出现这种错误的概率,这也是LSH为什么被广泛应用的原因。

min-hash

hash函数的选择

了解min-hash之前,首先普及一下Jaccard系数的概念。Jaccard系数主要用来解决的是非对称二元属性相似度的度量问题,常用的场景是度量2个集合之间的相似度,公式这里我不写了,就是2个集合的交比2个集合的并。

比如,我在底下的表格中写出了4个对象(你可以看做是4个文档)的集合情况,每个文档有相应的词项,用词典 { w1,w2,,w7} { w 1 , w 2 , … , w 7 } 表示。若某个文档存在这个词项,则标为1,否则标0.

word D1 D 1 D2 D 2 D3 D 3 D4 D 4
w1 w 1 1 0 1 0
w2 w 2 1 1 0 1
w3 w 3 0 1 0 1
w4 w 4 0 0 0 1
w5 w 5 0 0 0 1
w6 w 6 1 1 1 0
w7 w 7 1 0 1 0

首先,我们现在将上面这个word-document的矩阵按行置换,比如可以置换成以下的形式:

word D1 D 1 D2 D 2 D3 D 3 D4 D 4
w2 w 2 1 1 0 1
w1 w 1 1 0 1 0
w4 w 4 0 0 0 1
w3 w 3 0 1 0 1
w7 w 7 1 0 1 0
w6 w 6 1 1 1 0
w5 w 5 0 0 0 1

可以确定的是,这没有改变文档与词项的关系。现在做这样一件事:对这个矩阵按行进行多次置换,每次置换之后,统计每一列(其实对应的就是每个文档)第一个不为0的位置(行号),这样每次统计的结果能构成一个与文档数等大的向量,这个向量,我们称之为签名向量。

比如,如果对最上面的矩阵做这样的统计,得到 [1,2,1,2] [ 1 , 2 , 1 , 2 ] ,对于下面的矩阵做统计,得到 [1,1,2,1] [ 1 , 1 , 2 , 1 ] .

简单来想这个问题,就拿上面的文档来说,如果两个文档足够相似,那也就是说这两个文档中有很多元素是共有的,换句话说,这样置换之后统计出来的签名向量,如果其中有一些文档的相似度很高,那么这些文档所对应的签名向量的相应的元素,值相同的概率就很高。

我们把最初始时的矩阵叫做input matrix, m m 个文档, n 个词项组成。而把由 t t 次置换后得到的一个 t × m 的矩阵叫做signature matrix.

下面是我盗的一张图,能够很清晰的展现出这一套流程:

这里写图片描述

图中,4个文档,做了3次置换,得到了一个3 x 4的签名矩阵。感谢提供图的这篇博文的作者:http://blog.sina.com.cn/s/blog_4ff49c7e0102vl52.html

需要注意的是,置换矩阵的行,在代码实现的时候,可以用这样的算法实现:

  1. 在当下剩余的行中(初始时,剩余的行为全部行),随机选取任意一行,看看这一行哪些位置(这里的位置其实是列号)的元素是1,如果签名向量中这个位置的元素还未被写入,则在这个位置写入随机选取的这个行的行号。并将这一行排除。

  2. 持续进行1步的工作,直到签名向量全部被写满为止。

以上2步的意义跟对整个矩阵置换、再统计,结果是一样的。这么说可能有点抽象,我把函数放在下面:

def sigGen(matrix):
    """
    * generate the signature vector

    :param matrix: a ndarray var
    :return a signature vector: a list var
    """

    # the row sequence set
    seqSet = [i for i in range(matrix.shape[0])]

    # initialize the sig vector as [-1, -1, ..., -1]
    result = [-1 for i in range(matrix.shape[1])]

    count = 0

    while len(seqSet) > 0:

        # choose a row of matrix randomly
        randomSeq = random.choice(seqSet)

        for i in range(matrix.shape[1]):

            if matrix[randomSeq][i] != 0 and result[i] == -1:
                result[i] = randomSeq
                count += 1
        if count == matrix.shape[1]:
            break

        seqSet.remove(randomSeq)

    # return a list
    return result

现在给出一个定理。

定理:对于签名矩阵的任意一行,它的两列元素相同的概率是 xn x n ,其中 x x 代表这两列所对应的文档所拥有的公共词项的数目。而 x n 也就是这两个文档的Jaccard系数。

这个定理我想不用证明了。实际上,置换input matrix的行,取每列第一个非0元的做法,就是一个hash函数。这个hash函数成功地将多维数据映射成了一维数据。而从这个定理我们发现,这样的映射没有改变数据相似度。

需要注意的一点是,这里的hash函数只能对Jaccard系数定义数据相似度的情况起作用。不同的相似度模型,LSH是不同的,目前,还不存在一种通用的LSH。

构造LSH函数族

为了能实现前面LSH定义中的2个条件的要求,我们通过多次置换,求取向量,构建了一组hash函数。也就是最终得到了一个signature matrix. 为了控制相似度与映射概率之间的关系,我们需要按下面的操作进行,一共三步。

(1) 将signature matrix水平分割成一些区块(记为band),每个band包含了signature matrix中的 r r 行。需要注意的是,同一列的每个band都是属于同一个文档的。如下图所示。这个图我还是盗的上面链接中的博文,特此说明。

这里写图片描述

(2) 对每个band计算hash值,这里的hash算法没有特殊要求,MD5,SHA1等等均可。一般情况下,我们需要将这些hash值做处理,使之成为事先设定好的hash桶的tag,然后把这些band“扔”进hash桶中。如下图所示。但是这里,我们只是关注算法原理,不考虑实际操作的效率问题。所以,省略处理hash值得这一项,得到每个band的hash值就OK了,这个hash值也就作为每个hash bucket的

  • 111
    点赞
  • 362
    收藏
    觉得还不错? 一键收藏
  • 47
    评论
评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值