弗洛伊德(Floyd)算法求任意两点间的最短距离

原创 2016年08月30日 14:06:15

最近要搞最短路径方面的工作,把2年前搞过的北京地铁换乘算法拿出来看看,顺带整理下写出来,和大家分享下,算是抛砖引玉吧


Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理带权有向图或负权的最短路径问题

解决此问题有两种方法:


其一是分别以图中每个顶点为源点共调用n次算法;

其二是采用Floyd算法。

两种算法的时间复杂度均为O(n3),但后者形式上比较简单。




Floyd算法的基本思想: 
 

(1)利用二维数组dist[i][j]记录当前vi到vj的最短路径长度,数组dist的初值等于图的带权邻接矩阵; 



(2)集合S记录当前允许的中间顶点,初值S=Φ;

(3)依次向S中加入v0 ,v1… vn-1,每加入一个顶点,对dist[i][j]进行一次修正:设S={v0 ,v1… vk-1},加入vk,则dist(k)[i][j] = min{ dist(k-1)[i][j],dist(k-1)[i][k]+dist(k-1)[k][j]}。 


dist(k)[i][j]的含义:允许中间顶点的序号最大为k时从vi到vj的最短路径长度。
dist(n-1)[i][j]就是vi到vj的最短路径长度。




<span style="font-size:12px;color:#666666;">import java.util.ArrayList;
import java.util.List;

public class FloydInGraph {

    private static int INF = Integer.MAX_VALUE;
    //dist[i][j]=INF<==>i 和 j之间没有边
    private int[][] dist;
    //顶点i 到 j的最短路径长度,初值是i到j的边的权重
    private int[][] path;
    private List<Integer> result = new ArrayList<Integer>();

    public static void main(String[] args) {
        FloydInGraph graph = new FloydInGraph(5);
        int[][] matrix =
                {{INF, 30, INF, 10, 50}, {INF, INF, 60, INF, INF}, {INF, INF, INF, INF, INF}, {INF, INF, INF, INF, 30},
                        {50, INF, 40, INF, INF},};   
        /* 最下面的图
		int[][] matrix = {
    {0 ,20,INF,INF,20,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {20,0 ,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,30,0 ,20,INF,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,20,0 ,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {20,INF,INF,INF,0 ,10,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,30,INF,10,0 ,20,50,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,20,0 ,40,10,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,50,40,0 ,INF,20,20,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,10,INF,0 ,20,INF,INF,INF,30,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,20,20,0 ,20,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,20,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,10,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,10,0 ,INF,INF,20,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,30,INF,INF,INF,INF,0 ,20,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,20,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,40},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,40,0 }
    };
    */

        int begin = 0;
        int end = 4;
        graph.findCheapestPath(begin, end, matrix);
        List<Integer> list = graph.result;
        System.out.println(begin + " to " + end + ",the cheapest path is:");
        System.out.println(list.toString());
        System.out.println(graph.dist[begin][end]);
    }

    public void findCheapestPath(int begin, int end, int[][] matrix) {
        floyd(matrix);
        result.add(begin);
        findPath(begin, end);
        result.add(end);
    }

    public void findPath(int i, int j) {
        int k = path[i][j];
        if (k == -1) {
            return;
        }
        findPath(i, k);   //递归
        result.add(k);
        findPath(k, j);
    }

    public void floyd(int[][] matrix) {
        int size = matrix.length;
        //initialize dist and path   
        for (int i = 0; i < size; i++) {
            for (int j = 0; j < size; j++) {
                path[i][j] = -1;
                dist[i][j] = matrix[i][j];
            }
        }
        for (int k = 0; k < size; k++) {
            for (int i = 0; i < size; i++) {
                for (int j = 0; j < size; j++) {
                    if (dist[i][k] != INF &&
                            dist[k][j] != INF &&
                            dist[i][k] + dist[k][j] < dist[i][j]) {
                        dist[i][j] = dist[i][k] + dist[k][j];
                        path[i][j] = k;
                    }
                }
            }
        }

    }

    public FloydInGraph(int size) {
        this.path = new int[size][size];
        this.dist = new int[size][size];
    }
}  </span>

运行结果: 
0 to 4,the cheapest path is: 
[0, 3, 4] 
40


最短距离有三种情况: 
1、两点的直达距离最短。(如下图<v,x>) 
2、两点间只通过一个中间点而距离最短。(图<v,u>) 
3、两点间用通过两各以上的顶点而距离最短。(图<v,w>)

对于第一种情况:
   在初始化的时候就已经找出来了且以后也不会更改到。 

对于第二种情况:
   弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短 

对于第三种情况:
     如下图的五边形,可先找一点(比如x,使<v,u>=2),就变成了四边形问题,再找一点(比如y,使<u,w>=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。






此图的一个运行结果: 
D:\tutu>java FloydInGraph
10 to 14,the cheapest path is:
[10, 11, 12, 15, 14]
70

版权声明:本文为博主原创文章,未经博主允许不得转载。

各种距离算法汇总

1. 欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为: ...
  • mousever
  • mousever
  • 2015年05月25日 11:26
  • 16631

任意两点之间的最短路径问题(Floyd算法)--Java语言

我在前面的一篇博客中详细讲到了有权图中的最短路径问题--dijkstra算法,有兴趣的可以点开下面插件温习一下dijkstra算法。但是,dijkstra算法无法解决边权为负的情况。因为dijkstr...
  • carson0408
  • carson0408
  • 2017年12月04日 11:29
  • 750

任意两点之间的最短路径问题(Floyd-Warshall算法)

求解所有两点之间的最短路问题叫做任意两点之间的最短路问题。Floyd-Warshall算法考虑的是 一条最短路径上的中间结点。例如,简单路径p={v1,v2,...vl}上的中间结点指的是路径p上除...
  • u010455714
  • u010455714
  • 2015年08月12日 17:11
  • 2218

Floyd-Warshall算法--求任意两点最短距离

Floyd-Warshall算法要求求任意两点之间最短的路径? 思路使用之前学习的广度优先搜索或深度优先搜索对每两个点都进行一次搜索,共进行n^2次。 本次使用方法:引入中转点k,如果i到k的距...
  • tzshlyt
  • tzshlyt
  • 2016年12月06日 23:56
  • 717

图之Dijkstra算法、Floyd算法(最小路径问题)

本文内容部分来源于网易云课堂浙江大学数据结构视频教程和华山大师兄的博客http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.htm...
  • qustqustjay
  • qustqustjay
  • 2015年07月05日 18:24
  • 810

Floyd_任意点之间的最短路径算法

一、算法介绍:  Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法。从表面上粗看,Floyd算...
  • u013148406
  • u013148406
  • 2016年09月24日 14:34
  • 1559

floyd算法-求图中任意两点间最短路

floyd算法是一种可以在o(v^3)求出一个图中任意两点最短路的算法 输入:邻接矩阵d 输出:直接在d上面修改,每个元素d(i,j)代表点i到点j的最短路 这个算法的代码非常短,一眼看上去非常...
  • brainache
  • brainache
  • 2017年12月19日 10:35
  • 105

Floyd最短路算法

此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上。同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了...
  • amazingcode
  • amazingcode
  • 2016年11月04日 20:43
  • 1232

图论02—任意两点间最短距离及路径(经典)

======================================================== 求任意两点间最短距离及其路径。(万能最短路) 输入:权值矩阵,起点,终点 输出:最短距...
  • LZX19901012
  • LZX19901012
  • 2015年08月21日 11:53
  • 3152

Floyd算法,求图中两个点之间的最短距离

#include #include #include #include #include #include #include //Floyd算法,求图中两个点之间的最短距离 ...
  • u012432475
  • u012432475
  • 2015年05月31日 09:52
  • 440
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:弗洛伊德(Floyd)算法求任意两点间的最短距离
举报原因:
原因补充:

(最多只允许输入30个字)