弗洛伊德(Floyd)算法求任意两点间的最短距离

原创 2016年08月30日 14:06:15

最近要搞最短路径方面的工作,把2年前搞过的北京地铁换乘算法拿出来看看,顺带整理下写出来,和大家分享下,算是抛砖引玉吧


Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理带权有向图或负权的最短路径问题

解决此问题有两种方法:


其一是分别以图中每个顶点为源点共调用n次算法;

其二是采用Floyd算法。

两种算法的时间复杂度均为O(n3),但后者形式上比较简单。




Floyd算法的基本思想: 
 

(1)利用二维数组dist[i][j]记录当前vi到vj的最短路径长度,数组dist的初值等于图的带权邻接矩阵; 



(2)集合S记录当前允许的中间顶点,初值S=Φ;

(3)依次向S中加入v0 ,v1… vn-1,每加入一个顶点,对dist[i][j]进行一次修正:设S={v0 ,v1… vk-1},加入vk,则dist(k)[i][j] = min{ dist(k-1)[i][j],dist(k-1)[i][k]+dist(k-1)[k][j]}。 


dist(k)[i][j]的含义:允许中间顶点的序号最大为k时从vi到vj的最短路径长度。
dist(n-1)[i][j]就是vi到vj的最短路径长度。




<span style="font-size:12px;color:#666666;">import java.util.ArrayList;
import java.util.List;

public class FloydInGraph {

    private static int INF = Integer.MAX_VALUE;
    //dist[i][j]=INF<==>i 和 j之间没有边
    private int[][] dist;
    //顶点i 到 j的最短路径长度,初值是i到j的边的权重
    private int[][] path;
    private List<Integer> result = new ArrayList<Integer>();

    public static void main(String[] args) {
        FloydInGraph graph = new FloydInGraph(5);
        int[][] matrix =
                {{INF, 30, INF, 10, 50}, {INF, INF, 60, INF, INF}, {INF, INF, INF, INF, INF}, {INF, INF, INF, INF, 30},
                        {50, INF, 40, INF, INF},};   
        /* 最下面的图
		int[][] matrix = {
    {0 ,20,INF,INF,20,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {20,0 ,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,30,0 ,20,INF,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,20,0 ,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {20,INF,INF,INF,0 ,10,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,30,INF,10,0 ,20,50,INF,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,20,0 ,40,10,INF,INF,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,50,40,0 ,INF,20,20,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,10,INF,0 ,20,INF,INF,INF,30,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,20,20,0 ,20,INF,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,20,INF,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,10,INF,INF,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,10,0 ,INF,INF,20,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,30,INF,INF,INF,INF,0 ,20,INF,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,20,INF},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,40},
    {INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,40,0 }
    };
    */

        int begin = 0;
        int end = 4;
        graph.findCheapestPath(begin, end, matrix);
        List<Integer> list = graph.result;
        System.out.println(begin + " to " + end + ",the cheapest path is:");
        System.out.println(list.toString());
        System.out.println(graph.dist[begin][end]);
    }

    public void findCheapestPath(int begin, int end, int[][] matrix) {
        floyd(matrix);
        result.add(begin);
        findPath(begin, end);
        result.add(end);
    }

    public void findPath(int i, int j) {
        int k = path[i][j];
        if (k == -1) {
            return;
        }
        findPath(i, k);   //递归
        result.add(k);
        findPath(k, j);
    }

    public void floyd(int[][] matrix) {
        int size = matrix.length;
        //initialize dist and path   
        for (int i = 0; i < size; i++) {
            for (int j = 0; j < size; j++) {
                path[i][j] = -1;
                dist[i][j] = matrix[i][j];
            }
        }
        for (int k = 0; k < size; k++) {
            for (int i = 0; i < size; i++) {
                for (int j = 0; j < size; j++) {
                    if (dist[i][k] != INF &&
                            dist[k][j] != INF &&
                            dist[i][k] + dist[k][j] < dist[i][j]) {
                        dist[i][j] = dist[i][k] + dist[k][j];
                        path[i][j] = k;
                    }
                }
            }
        }

    }

    public FloydInGraph(int size) {
        this.path = new int[size][size];
        this.dist = new int[size][size];
    }
}  </span>

运行结果: 
0 to 4,the cheapest path is: 
[0, 3, 4] 
40


最短距离有三种情况: 
1、两点的直达距离最短。(如下图<v,x>) 
2、两点间只通过一个中间点而距离最短。(图<v,u>) 
3、两点间用通过两各以上的顶点而距离最短。(图<v,w>)

对于第一种情况:
   在初始化的时候就已经找出来了且以后也不会更改到。 

对于第二种情况:
   弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短 

对于第三种情况:
     如下图的五边形,可先找一点(比如x,使<v,u>=2),就变成了四边形问题,再找一点(比如y,使<u,w>=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。






此图的一个运行结果: 
D:\tutu>java FloydInGraph
10 to 14,the cheapest path is:
[10, 11, 12, 15, 14]
70

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Floyd-Warshall算法--求任意两点最短距离

Floyd-Warshall算法要求求任意两点之间最短的路径? 思路使用之前学习的广度优先搜索或深度优先搜索对每两个点都进行一次搜索,共进行n^2次。 本次使用方法:引入中转点k,如果i到k的距...
  • tzshlyt
  • tzshlyt
  • 2016年12月06日 23:56
  • 592

图论03—任意两点间最短距离及路径(改进)

======================================================== 重要程度 ***** 求任意两点间最短距离及其路径。(万能最短路) 输入:权值矩阵,起...

HDU-1869(floyd求任意两点之间的距离)

这个题目,我一看到的居然是用DFS,汗了,,,但是我写着写着,还居然给过了样例,和自己的一些特殊数据,,但是到后来我突然就觉得不对了,,因为一出现环数据就过不了了,而我又不想在研究研究求出最小值,但是...

python求各种距离公式

今天一个偶然的机会体会到了python数据运算的强大。求一个数组各样本之间的距离仅简单的几句代码就行。看来真的技术改变世界啊。废话不多说,记下来怕以后忘记。 from scipy.spatial.di...

我对弗洛伊德算法的理解(求图中任意两点之间最短距离)

我对弗洛伊德算法的理解(求图中任意两点之间最短距离) 基本过程: for k = 1:n for i = 1:n for j = 1:n ...

弗洛伊德(Floyd)算法求图的最短路径

弗洛伊德基本思想弗洛伊德算法作为求最短路径的经典算法,其算法实现相比迪杰斯特拉等算法是非常优雅的,可读性和理解都非常好。 基本思想: 弗洛伊德算法定义了两个二维矩阵: 矩阵D...
  • jeffleo
  • jeffleo
  • 2016年11月26日 11:44
  • 688

数据结构学习之弗洛伊德floyd算法求最短路径

#include "stdio.h" #include "stdlib.h" #define MAX 20 #define INFINITY 9999 typedef bool PathM...
  • earbao
  • earbao
  • 2012年10月26日 12:45
  • 2992

数据结构看书笔记(十)—— 求最短路径问题之--迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法

最短路径: 对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点是源点,最后一个顶点是终点。 对于非网图来说,完全可以理解为所有边的权值都为1的网。 ...

弗洛伊德算法(Floyd)java实现

  • 2011年10月20日 13:01
  • 1KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:弗洛伊德(Floyd)算法求任意两点间的最短距离
举报原因:
原因补充:

(最多只允许输入30个字)