5.5 函数值

5.5 函数值

 

我们已经看到过把函数当作值使用的示例(第三章),当时,写过一个汇总列表元素的函数,把其他的函数作为参数值。用这种方式,我们能够把同一个汇总函数,用于不同的目的:我们先用它来计算列表中所有元素的和,后面用来找出集合中的最大元素。

处理数据集合可能是展示函数作为值使用之重要的最佳方式。必须要说的是,这个概念的重要性,远不止这种情况,在本书的其余部分将会逐步看到。我们首先来看一个命令式代码的示例,从给定集合中选出偶数,返回到另一个集合中:

 

var numbers = new [] {3,9,1,8,4};

var evens = new List<int>();

foreach(var n in numbers)

if(n%2 == 0)

  evens.Add(n);

return evens;

 

想象一下,如果要以不同的方式筛选这个集合,比如,返回所有的正数,哪些行代码需要修改。四行中有三行(不算第一行,这是初始化数据的,和最后一行,是返回结果的)都是固定格式的代码,将保持不变(代码变化的部分以粗体突出显示)。把函数当作值,并把它作为参数接受,我们可以提取代码的通用部分,作为可重复使用的方法;以后调用代码只要指定一个参数值,描述各种筛选器变化的部分,即需要应用到每个元素的判断条件。

事实上,很多的标准函数,如筛选,在 F # 中已经存在,并在 .NET 3.5 LINQ 中也添加了几乎同样的函数,来处理集合;只是有些命名不同而已。在 F# 中,能够取判断条件作为参数,并执行筛选的函数,称为筛选器(filter),而在 LINQ 中,称为条件(Where,类似于 SQL 中的 WHERE 子句)。清单 5.14 是前面的示例使用这类函数的一个实现。

 

清单 5.14 使用判断条件进行筛选

// C# version

using System.Linq;  <-- 导入 Where 扩展方法

 

var nums = new [] {4,9,1,8,6};

var evens = nums.Where(n => n%2 == 0);  [1]

PrintNumbers(evens);    <-- 输入结果到控制台

 

// F# version with output from F#Interactive

> let nums = [ 4; 9; 1; 8; 6 ];;

val nums : int list

> let evens = List.filter (fun n ->n%2 = 0) nums;;  [2]

val evens : int list = [ 4; 8; 6 ]

 

如果我们必须把判断条件写成正常的 C# 中的方法或 F# 中的函数(使用 let),代码不可能比前面的版本更短。使代码更简单的关键功能,是能够在调用 Where 方法[1]或 filter 函数[2]的内部,直接写函数(这里的判断条件)。

在 C# 中,这种符号称为 lambda 表达式,在 F# 中称为 lambda 函数。因为本书主要是关于 F# 的,我们会保持统一,使用 F# 的命名。在两种情况下的lambda 一词,都是指希腊字母,来自于 lambda 演算,我们在第二章中提到过。

 

什么是函数值?

 

在函数编程语言中的函数是来源于数学上的函数概念,在许多方面,它与有命令式编程背景的程序员直觉认为的函数,是不一样的。在命令式编程中,函数是一段程序,取得参数,执行代码,返回结果;在这个意义上的函数,可以做任何事情;最重要的是,它可以使用和修改全局状态,因此,调用同一个函数,使用相同的参数,但结果可能不同。这方面最明显的例子,可能就是伪随机数发生器,如果它始终返回相同的结果,那也就不能叫随意了!

在数学上,函数更多的是反映了参数值与结果之间的关系。这就是说,数学上的函数,如果参数值相同,返回的结果始终相同。显然,这就是我们前面示例中判断条件的工作方式;对于相同的参数值,它始终返回相同的结果(偶数为真,奇数为假)。

有这种数学方式表现的函数,称为纯函数(pure functions)。我们写的大多数函数都是纯函数,但在下一章结束时,我们会看到这个规则重要且有用的例外。你可能会想,数学上的伪随机数生成器函数到底应该是什么样子。

对于有面向对象技术背景的人来说,有另一个途径看函数:可以把函数值看作对象,实现真正简单的、只有一个方法的接口。按照这种理解,前面示例中的判断条件相当于下面的接口:

 

interface Function_Int_Bool {

  boolExecute(int arg);

}

 

在 C# 中,委派(delegates)有点类似于函数,C# 3.0 使之更接近于这个简单的概念。然而,作为在 F# 和函数语言中使用的函数概念,主要是以数学概念为基础的。从这个意义上来讲,F# 函数比接口或委派,它们只是函数,要简单得多。

 

在前面的示例中,我们已经看到 lambda 函数是一个关键因素,使简洁的函数编程风格成为可能。我们在全书中都会使用到,因此,需要仔细地看看 lambda 函数。

 

 

AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析与控制器设计。文中结合Matlab代码实现,展示了建模与仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究与工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析与设计能力。
内容概要:本文介绍了基于物PINN驱动的三维声波波动方程求解(Matlab代码实现)理信息神经网络(PINN)求解三维声波波动方程的Matlab代码实现方法,展示了如何利用PINN技术在无需大量标注数据的情况下,结合物理定律约束进行偏微分方程的数值求解。该方法将神经网络与物理方程深度融合,适用于复杂波动问题的建模与仿真,并提供了完整的Matlab实现方案,便于科研人员理解和复现。此外,文档还列举了多个相关科研方向和技术服务内容,涵盖智能优化算法、机器学习、信号处理、电力系统等多个领域,突出其在科研仿真中的广泛应用价值。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及工程技术人员,尤其适合从事计算物理、声学仿真、偏微分方程数值解等相关领域的研究人员; 使用场景及目标:①学习并掌握PINN在求解三维声波波动方程中的应用原理与实现方式;②拓展至其他物理系统的建模与仿真,如电磁场、热传导、流体力学等问题;③为科研项目提供可复用的代码框架和技术支持参考; 阅读建议:建议读者结合文中提供的网盘资源下载完整代码,按照目录顺序逐步学习,重点关注PINN网络结构设计、损失函数构建及物理边界条件的嵌入方法,同时可借鉴其他案例提升综合仿真能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值