数值分析学习笔记

第 1 章 数值分析与科学计算引论

1.1 数值分析的对象、作用与特点

1.2 数值计算的误差

1.3 误差定性分析与避免误差危害

1.4 数值计算中算法设计的技术

第 2 章 插值法

2.1 引言

2.2 拉格朗日插值

2.2.1 线性插值与抛物线插值

取 n=1,即一阶多项式

点斜式:L_1(x)=y_k+\frac{y_{k+1}-y_k}{x_{k+1}-x_k}(x-x_k)

两点式:L_1(x)=\frac{x_{k+1}-x}{x_{k+1}-x_k}y_k+\frac{x-x_k}{x_{k+1}-x_k}y_{k+1}

由两点式看出 L_1(x) 是由两个线性函数

l_k(x)=\frac{x-x_{k+1}}{x_k-x_{k+1}},l_{k+1}=\frac{x-x_k}{x_{k+1}-x_k} 

线性组合得到的,其系数分别为 y_k 及 y_{k+1},即

L_1(x)=y_kl_k(x)+y_{k+1}l_{k+1}(x)

2.2.2 拉格朗日插值多项式

n 次插值基函数:若 n 次多项式 l_j(x)(j=0,1,\cdots,n) 在 n+1 个节点 x_0<x_1<\cdots<x_n 上满足条件

就称这 n+1 个 n 次多项式 l_0(x),l_1(x),\cdots,l_n(x) 为节点 x_0,x_1,\cdots,x_n 上的 n 次插值基函数

所以有

2.2.3 插值余项与误差估计 

2.3 均差与牛顿插值多项式

2.4 埃尔米特插值

2.5 分段低次插值

2.6 三次样条插值

第 3 章 函数逼近与快速傅里叶变换

3.1 函数逼近的基本概念

3.2 正交多项式

3.2.1 正交函数族与正交多项式

若 f(x),g(x)\in C[a,b],\rho(x) 为 [a,b] 上的权函数且满足

则称 f(x) 与 g(x) 在 [a,b] 上带权 \rho(x) 正交

若函数族 \varphi _0(x),\varphi _1(x),\cdots,\varphi_n(x),\cdots 满足关系

则称 \{\varphi_k(x)\} 是 [a,b]上带权 \rho(x) 的正交函数族

若 A_k\equiv 1,则称为标准正交函数族 

设 \varphi_n(x) 是 [a,b] 上首项系数 a_n\neq 0 的 n 次多项式,\rho(x) 为 [a,b] 上的权函数,如果多项式序列 \{\varphi_n(x)\}^\infty_0 满足上式,则称多项式序列 \{\varphi_n(x)\}^\infty_0 在 [a,b] 上带权 \rho(x) 正交,称 \varphi_n(x) 为 [a,b] 上带权 \rho(x) 的 n 次正交多项式

定理:设 \{\varphi_n(x)\}^\infty_0 是 [a,b] 上带权 \rho(x) 的正交多项式,则 \varphi_n(x)(n\ge 1) 在区间 (a,b) 内有 n 个不同的零点

3.2.2 勒让德多项式

当区间为 [-1,1],权函数 \rho(x)\equiv 1 时,由 \{1,x,\cdots,x^n,\cdots\} 正交化得到的多项式称为勒让德多项式,并用 P_0(x),P_1(x),\cdots,P_n(x),\cdots 表示,勒让德多项式的简单表达式

由于 (x^2-1)^n 是 2n 次多项式,求 n 阶导数后得

于是得首项 x^n 的系数 a_n=\frac{(2n)!}{2^n(n!)^2},显然最高项系数为 1 的勒让德多项式为

 勒让德多项式有下述几个重要性质:

正交性

奇偶性 

由于 \varphi(x)=(x^2-1)^n 是偶次多项式,经过偶次求导仍为偶次多项式,经过奇次求导仍为奇次多项式,故 n 为偶数时,P_n(x) 为偶函数,n 为奇数时,P_n(x) 为奇函数

递推关系 

零点 

P_n(x) 在区间 [-1,1] 内有 n 个不同的实零点

3.2.3 切比雪夫多项式

当权函数 \rho(x)=\frac{1}{\sqrt{1-x^2}},区间为 [-1,1] 时,由序列 \{1,x,\cdots,x^n,\cdots\} 正交化得到的正交多项式就是切比雪夫多项式,它可以表示为

若令 x=cos\theta,则 T_n(x)=cos(n\theta),0\le\theta\le\pi 

递推关系

正交

切比雪夫多项式 \{T_k(x)\} 在区间 [-1,1] 上带权 \rho(x)=\frac{1}{\sqrt{1-x^2}} 正交,且

令 x=cos\theta,则 dx=-sin\theta d\theta,于是 

奇偶性 

T_{2k}(x) 只含 x 的偶次幂,T_{2k+1}(x) 只含 x 的奇次幂

零点

T_n(x) 在区间 [-1,1] 上有 n 个零点

首项系数 

T_n(x) 的首项 x^n 的系数为 2^{n-1}(n=1,2,\cdots)

3.2.4 切比雪夫多项式零点插值

3.2.5 其他常用的正交多项式

3.3 最佳平方逼近

3.4 曲线拟合的最小二乘法

3.5 有理逼近

3.6 三角多项式逼近与快速傅里叶变换

第 4 章 数值积分与数值微分

4.1 数值积分概论

4.1.1 数值积分的基本思想

由积分中值定理

我们将 f(\xi) 称为区间 [a,b] 上的平均高度。这样,只要对平均高度 f(\xi) 提供一种算法,相应地便获得一种数值求积方法. 

梯形公式,用端点的算术平均值作为平均高度

中矩阵公式,用区间中点近似取代平均高度

 更一般地,我们可以在区间 [a,b] 上适当选取某些节点 x_k,然后用 f(x) 的加权平均得到平均高度 f(\xi) 的近似值

x_k 称为求积节点;A_k 称为求积系数,亦称伴随节点 x_k 的权。权 A_k 仅仅与节点 x_k 的选取有关,而不依赖于被积函数 f(x) 的具体形式. 

4.1.2 代数精度的概念

如果某个求积公式对于次数不超过 m 的多项式均能准确地成立,但对于 m+1 次多项式就不准确成立,则称该求积公式具有 m 次代数精度(或代数精确度).

4.1.3 插值型的求积公式

作为积分 I=\int ^b_af(x)dx 的近似值,这样构造出的插值型求积公式 

式中求积系数 A_k 通过插值基函数 l_k(x) 积分得出,即 

4.1.4 求积公式的余项

4.1.5 求积公式的收敛性与稳定性

4.2 牛顿-柯特斯公式

4.2.1 柯特斯系数与辛普森公式

牛顿-柯特斯公式,将积分区间 [a,b] 划分为 n 等份,步长 h=\frac{b-a}{n},选取等距节点 x_k=a+kh

式中 C_k^{(n)} 称为柯特斯系数

 当 n=1

当 n=2

相应的求积公式是辛普森(Simpson)公式: 

当 n=4,有柯特斯公式

这里 x_k=a+kh,h=\frac{b-a}{4}

4.3 复合求积公式

4.3.1 复合梯形公式

将区间 [a,b] 划分为 n 等份,分点 x_k=a+kh,h=\frac{b-a}{n},k=0,1,\cdots,n,在每个子区间 [x_k,x_{k+1}](k=0,1,\cdots,n-1) 上采用梯形公式,则得

复合梯形公式(不要余项)

4.3.2 复合辛普森求积公式

将区间 [a,b] 划分为 n 等份,在每个子区间 [x_k,x_{k+1}] 上采用辛普森公式,若记 x_{k+1/2}=x_k+\frac{1}{2}h,则得

复合辛普森求积公式 (不要余项)

4.4 龙贝格求积公式

4.4.1 梯形公式的递推化

 用复合梯形公式求得子区间 [x_k,x_{k+1}] 上的积分值为

把每个子区间上的积分值相加得

进而得到下面梯形递推公式 

其中 T_n=\sum\limits^{n-1}_{k=0} [f(x_k)+f(x_{k+1})],是梯形公式而不是复合梯形公式 

4.4.2 外推技巧

由梯形公式,当 [a,b] 分为 n 等份时有

若记 T_n=T(h),当区间 [a,b] 分为 2n 等份时,则有 T_{2n}=T(\frac{h}{2}),并且有

设 f(x)\in C^\infty[a,b],则有 

其中系数 \alpha_l(l=1,2,\cdots) 与 h 无关,代入 \frac{h}{2} 得 

结合上两条式子得到 

这里 \beta_1,\beta_2,\cdots 是与 h 无关的系数,用 S(h) 近似积分值 I,其误差阶为 O(h^4),这比复合梯形公式的误差阶 O(h^2) 提高了,容易看到 S(h)=S_n,即将 [a,b] 分为 n 等份得到的复合辛普森公式 

 这种将计算 I 的近似值的误差阶由 O(h^2) 提高到 O(h^4) 的方法称为外推算法,也称为理查森外推算法,只要真值与近似值的误差能表示成 h 的幂级数,都可使用外推算法,提高精度.

同理有

记 C(h)=C_n,得

 同理有

4.4.3 龙贝格算法

记 T_0(h)=T(h),T_1(h)=S(h),T_2(h)=C(h),T_3(h)=R(h) 等,从而可将上述公式写成统一形式

经过 m(m=1,2,…) 次加速后,余项便取下列形式:

上述处理方法通常称为理查森外推加速方法

龙贝格求积算法,设 T_0^{(k)} 表示二分 k 次后求得的梯形值,且以 T_m^{(k)} 表示序列 \{T_0^{(k)}\} 的m次加速值

计算过程如下:

(1) 取 k=0,h=b-a,求 T_0^{(0)}=\frac{h}{2}[f(a)+f(b)]

令 1\rightarrow k (k 记为区间 [a,b] 的二分次数)

(2) 求梯形值 T_0(\frac{b-a}{2^k}),即按递推公式计算 T_0^{(k)}

(3) 求加速值,逐个求出下面 T 表的第 k 行其余个元素 T_j^{k-j}(j=1,2,\cdots,k)

(4) 若 |T_k^{(0)}-T_{k-1}^{(0)}|<\varepsilon(预先给定的精度),则终止计算,并取 T_k^{(0)}\approx I;否则令 k+1\rightarrow k,转 (2) 继续计算

同一行的下标与上标之和固定,元素由左边及左上角的元素得出 

4.5 自适应积分方法

4.6 高斯求积公式

4.6.1 一般理论

机械求积公式

 含有 2n+2 个待定参数 x_k,A_k(k=0,1,\cdots,n)。当 x_k 为等距节点时得到的插值求积公式其 代数精度至少为 n 次,如果适当选取 x_k(k=0,1,\cdots,n),有可能使求积公式具有 2n+1 次代数精度.

下面研究带权积分I=\int_{a}^{b}f(x)\rho(x)dx,这里 \rho(x) 为权函数,其求积公式为

 A_k(k=0,1,\cdots,n) 为不依赖于 f(x) 的求积系数,x_k(k=0,1,\cdots,n) 为求积节点,可适当选取 x_k 及 A_k(k=0,1,\cdots,n) 使上式具有 2n+1 次代数精度

如果该求积公式具有 2n+1 次代数精度,则称其节点 x_k(k=0,1,\cdots,n) 为高斯点相应的公式称为高斯型求积公式

根据定义要使上式具有 2n+1 次代数精度,只要取 f(x)=x^m,对 m=0,1,…,2n+1,上式精确成立,则得

当给定权函数 \rho(x),求出右端积分,则可由上式解得 A_k 及 x_k(k=0,1,\cdots,n) 

定理:插值型求积公式的节点 a\le x_0<x_1<\cdots<x_n\le b 是高斯点的充分必要条件是以这些节点为零点的多项式

与任何次数不超过 n 的多项式 p(x) 带权 \rho(x) 正交,即

4.6.2 高斯-勒让德求积公式

在高斯求积公式中取权函数 \rho(x)=1,区间为 [-1,1],则得高斯-勒让德求积公式

勒让德多项式是区间 [-1,1]上的正交多项式,因此勒让德多项式 P_{n+1}(x) 的零点就是上述求积公式的高斯点 

4.6.3 高斯-切比雪夫求积公式

4.6.4 无穷区间的高斯型求积公式

4.7 多重积分

4.8 数值微分

第 5 章 解线性方程组的直接方法

5.1 引言与预备知识

5.2 高斯消去法

5.2.1 高斯消去法

举个例子说明消去法的基本思想

通过行变换得到与原方程组等价的三角形线性方程组 

5.2.2 矩阵的三角分解

由于对矩阵进行行的初等变换相当于用初等矩阵左乘该矩阵,故消去法的第一步可表示为

其中

即用第 1 行处理后面的行,注意 m 前面都有 - 号 

第 k 步消去法可表示为

其中

 即用第 k 行处理后面的行

可将上述所有步结合到一起得到

将上面的三角矩阵 A^{(n)} 记为 U,得到

 其中

为单位下三角矩阵 ,此为 LU 分解

5.2.3 列主元消去法

5.3 矩阵三角分解法

5.3.1 直接三角分解法

5.3.2 平方根法

5.3.3 追赶法

5.4 向量和矩阵的范数

5.5 误差分析

第 6 章 解线性方程组的迭代法

6.1 迭代法的基本概念

6.1.1 引言

举个例子,求解线性方程组

记为 Ax=b,其中

 此方程组的精确解是 x^*=(3,2,1)^T,现将线性方程组改写为

或写为 x=B_0x+f,其中

 任取初始值,例如取 x^{(0)}=(0,0,0)^T,将这些值代入上述方程组右边,(若为等式即得到此方程组的解),得到新的值 x^{(1)}=(x_1^{(1)},x_2^{(1)},x_3^{(1)})^T=(2.5,3,3)^T,再将 x^{(1)} 分量再代入上述方程组得到 x^{(2)},反复利用这个计算程序,得到一向量序列和一般的计算公式(迭代公式)

简写为

这就是迭代法

6.2 雅可比迭代法与高斯-塞德尔迭代法

6.2.1 雅可比迭代法

将线性方程组中的系数矩阵 A=(a_{ij})\in \mathbb{R}^{n\times n} 分成三部分

 设 a_{ij}\neq 0(i=1,2,\cdots,n),选取 M 为 A 的对角元素部分,即选取 M=D(对角矩阵),A=D-N,得到解 Ax=b 的雅可比迭代法

其中 B=I-D^{-1}A=D^{-1}(L+U)\equiv J,f=D^{-1}b,称 J 为解 Ax=b 的雅可比迭代法的迭代矩阵

下面给出雅可比迭代法的分量计算公式,记 x^{(k)}=(x_1^{(k)},\cdots,x_i^{(k)},\cdots,x_n^{(k)})^T

由雅可比公式有

 于是解 Ax=b 的雅可比迭代法的计算公式为

6.2.2 高斯-塞德尔迭代法

选取分裂矩阵 M 为 A 的下三角部分,即选取 M=D-L (下三角矩阵),A=M-N,于是得到解 Ax=b 的高斯-塞德尔迭代法

其中 B=I-(D-L)^{-1}A=(D-L)^{-1}U\equiv G,f=(D-L)^{-1}b,称 G=(D-L)^{-1}U 为解 Ax=b 的高斯-塞德尔迭代法的迭代矩阵

6.2.3 雅可比迭代与高斯-塞德尔迭代收敛性

6.3 超松弛迭代法

6.4 共轭梯度法

第 7 章 非线性方程与方程组的数值解法

7.1 方程求根与二分法

7.2 不动点迭代法及其收敛性

7.3 迭代收敛的加速方法

7.4 牛顿法

7.5 弦截法与抛物线法

7.6 求根问题的敏感性与多项式的零点

7.7 非线性方程的数值解法

第 8 章 矩阵特征值计算

8.1 特征值性质和估计

8.2 幂法及反幂法

8.3 正交变换与矩阵分解

8.4 QR方法

第 9 章 常微分方程初值问题数值解法

9.1 引言

如果存在实数 L>0,使得

则称 f 关于 y 满足 Lipschitz 条件,L 称为 f 的 Lipschitz 常数.

定理:设 f 在区域 D=\{(x,y)|a \le x\le b,y\in \mathbb{R}\} 上连续,关于 y 满足利普希茨条件,则对任意 x_0\in[a,b],y_0\in \mathbb{R},常微分方程初值问题

当 x∈[a,b] 时存在唯一的连续可微解 y(x)

即导数满足 Lipschitz 条件就存在唯一解

9.2 简单的数值方法

9.2.1 欧拉法与后退欧拉法

后退欧拉法也称为隐式欧拉法,用右矩形公式 hf(x_{n+1},y(x_{n+1})) 近似,则得

9.2.2 梯形方法

取平均斜率 

梯形法的迭代公式为

9.2.3 改进欧拉公式

即把欧拉法的结果代入梯形方法 

或表示为下列平均化形式

9.2.4 单步法的局部截断误差与阶

9.3 龙格-库塔方法

9.3.1 显式龙格-库塔法的一般形式

基于改进欧拉法,用高阶级数逼近积分 

 得 r 级显式龙格-库塔法(简称 R-K 法)

其中 

9.3.2 二阶显式 R-K 方法

9.3.3 三阶与四阶显式 R-K 方法

9.3.4 变步长的龙格-库塔方法

9.4 单步法的收敛性与稳定性

9.5 线性多步法

9.6 线性多步法的收敛性与稳定性

9.7 一阶方程组与刚性方程组 

  • 16
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值