7.2 平面文档的表示

7.2 平面文档的表示

 

在这一章,我们将要开发一个用于显示文档的应用程序。首先设计文档的表示形式,适合于绘制在屏幕上。使用这种表示方式,文档就是元素的列表,其中包含一定内容(可以是文本,也可以是图像),和指定的边框,在边框中绘制具体内容。图7.1是一个文档的示例,有三个突出显示的元素。

我们看一下用 F# 表示文档的数据结构。清单 7.4 引入了新的表示两种类型元素的差别联合,和新的表示文本元素的记录类型,还使用了我们先前定义的 Rect 类型。


图 7.1 示例文档包含三个元素,两个显示不同字体的文本和一个显示图像。

 

清单 7.4 平面文档的表示 (F#)

 

open System.Drawing  <-- 包含字体类

 

type TextContent =    [1]

  { Text : string

    Font : Font }

 

type ScreenElement =    [2]

  | TextElement of TextContent * Rect

  | ImageElement of string * Rect    <-- 保存图像文件名

 

在此示例中,我们定义了两个类型。首先,我们定义了名为 TextContent 的记录类型,表示用于绘制的文本和字体,第二个类型称为 ScreenElement,是差别联合,有两个可选值。第一个可选值存储文本内容,第二个包含图像的文件名。两者都有一个 Rect 来定义绘制的边框。清单7.5 显示了表示图 7.1 的示例文档的代码,用到了我们新的数据类型。

 

清单 7.5 用元素列表表示示例文档 (F#)

 

let fntText = new Font("Calibri",12.0f)   | 创建标题和常规文本的字体

let fntHead = new Font("Calibri",15.0f)  |

 

let elements =  <-- 创建ScreenElement 值列表

  [ TextElement

    ({ Text ="Functional Programming for the Real World"

       Font = fntHead },

     { Left = 10.0f;Top = 0.0f; Width = 410.0f; Height = 30.0f });

    ImageElement

     ("cover.jpg",

       { Left= 120.0f; Top = 30.0f; Width = 150.0f; Height = 200.0f });

    TextElement

      ({ Text ="In this book, we'll introduce you to the essential " +

        "concepts of functional programming, but thanks to the .NET " +

        "Framework, we won't be limited to theoretical examples. " +

        "We'll use many of the rich .NET libraries to show how " +

        "functional programming can be used in the real world."

        Font = fntText },

       {Left = 10.0f; Top = 230.0f; Width = 400.0f; Height = 400.0f }) ]

 

首先,我们定义两种不同文本元素的字体,然后,构造包含元素的列表。创建元素时,我们使用了前面讨论的语,创建了几个 F# 记录类型值。用这种方式构造结构化文档,并不实用;在 7.3 节,我们将设计另一种表示形式,更适合创建文档。在此之前,我们仍用这种表示形式保存文档,将实现绘制文档的函数。

内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合Koopman算子理论与递归神经网络(RNN)的数据驱动建模方法,旨在对非线性纳米定位系统进行有效线性化建模,并实现高精度的模型预测控制(MPC)。该方法利用Koopman算子将非线性系统映射到高维线性空间,通过递归神经网络学习系统的动态演化规律,构建可解释性强、计算效率高的线性化模型,进而提升预测控制在复杂不确定性环境下的鲁棒性与跟踪精度。文中给出了完整的Matlab代码实现,涵盖数据预处理、网络训练、模型验证与MPC控制器设计等环节,具有较强的基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)可复现性和工程应用价值。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及自动化、精密仪器、机器人等方向的工程技术人员。; 使用场景及目标:①解决高精度纳米定位系统中非线性动态响应带来的控制难题;②实现复杂机电系统的数据驱动建模与预测控制一体化设计;③为非线性系统控制提供一种可替代传统机理建模的有效工具。; 阅读建议:建议结合提供的Matlab代码逐模块分析实现流程,重点关注Koopman观测矩阵构造、RNN网络结构设计与MPC控制器耦合机制,同时可通过替换实际系统数据进行迁移验证,深化对数据驱动控制方法的理解与应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值